Аэс: как это работает?

Содержание:

Преимущества и недостатки атомных электростанций

Спрос на электроэнергию, постоянно растет во всем мире. Особенно это касается развитых стран, где потребление значительно опережает выработку электричества. Принимаются меры по использованию альтернативных источников, но заметных практических результатов они пока не дали. Решить эту проблему возможно разными способами, в том числе путем дальнейшего развития и совершенствования атомной энергетики. При этом, нужно обязательно учитывать все плюсы и минусы атомных электростанций.

Строительство новых АЭС имеет несомненные достоинства, среди которых можно отметить следующие:

  • Используемые топливные ресурсы обладают высокой энергоемкостью. Полноценное использование одного килограмма урана дает такое же количество энергии, которое получается при сжигании 50 т нефти или 100 т каменного угля. Отсюда и высокий КПД атомной электростанции.
  • Возможность переработки ресурсов и их вторичное применение. В отличие от традиционных видов топлива, уран после расщепления вполне может быть использован вновь. В перспективе возможен полный переход к замкнутому циклу, при котором не будут образовываться вредные и опасные отходы.
  • Когда эксплуатируется электростанция (АЭС), у нее отсутствует парниковый эффект. Эти установки ежедневно предотвращают выбросы в атмосферу миллионов тонн углекислого газа.
  • Независимость реакторов от мест, где располагается топливо. Из-за высокого энергетического эквивалента ядерных ресурсов, процесс их транспортировки не требует существенных затрат.
  • Стоимость эксплуатации сравнительно невысокая и не превышает расходы на содержание других типов электростанций.

Однако, учитывая специфику атомных установок, следует отметить и недостатки, связанные с их использованием:

  • В первую очередь, это тяжелые последствия, возникающие даже при незначительной аварии. В связи с этим, любая АЭС опасна и требует достаточно сложных систем безопасности с широкими возможностями резервирования. Это позволяет обезопасить основной механизм даже при значительных авариях.
  • Необходимость уничтожать отработанное топливо. Его утилизация требует серьезных затрат, достигающих 20% от общих эксплуатационных расходов.
  • Для атомных электростанций по техническим причинам нежелательна работа в маневренном режиме.

Тем не менее, несмотря на недостатки, данное направление считается перспективным, поэтому ведутся постоянные исследования по дальнейшему совершенствованию и развитию атомной энергетики.

Все атомные электростанции России

Плавучая атомная электростанция

Аварии на атомных электростанциях

Газотурбинная электростанция (ГТЭС)

Тепловые электростанции (ТЭС)

Волновая электростанция (ВЭС)

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так: После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» – «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой – D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов – графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Обеспечение радиационной безопасности БалАЭС

Обеспечение радиационной безопасности Балаковской АЭС производится в соответствии с требованием законодательства.

Все помещения Балаковской АЭС физически разделены на зону контролируемого доступа, в которой возможно воздействие ионизирующего излучения на персонал, и зону свободного доступа, в которой такая возможность исключена.

Проход из одной зоны в другую осуществляется только через специальные санпропускники, в которых находятся душевые, помещения для переодевания и хранения одежды и специальные приборы для контроля наличия загрязнения радиоактивными веществами. Радиационно-опасные работы проводятся только по специальным дозиметрическим нарядам.

Также радиационная безопасность обеспечивается сложной системой притяжно-вытяжной вентиляции с определённым направленным движением воздуха из зон с малым радиоактивным загрязнением в так называемые необслуживаемые помещения с высоким уровнем радиации (вплоть до создания в таких помещениях разрежения).

В итоге все вентиляционные потоки поступают к дезактивационным фильтрам, а затем к вентиляционной трубе высотой 100 м.

Первая ступень фильтрации осуществляется с помощью стекловолокна и ткани Петрянова (синтетический материал на основе тонковолокнистых волокон перхлорвинила), во второй ступени используются адсорбционные фильтры, состоящие из колонн, загруженных активированным углём.

Опасны ли атомные станции

В итоге мы получаем ситуацию, при которой атомная энергетика напоминает ситуацию с самолетами. Их многие боятся, но в реальности риск просто умереть на улице в сотни раз выше, чем разбиться на самолете. Просто аварии вызывают большой резонанс и разово погибает больше людей, но такие аварии случаются редко.

Кроме систем самой атомной станции, о которых мы поговорим ниже, они сопровождаются серьезными мерами предосторожности. Признаюсь честно, когда я находился рядом с Воронежской АЭС мне было немного не по себе, но когда я собрал побольше информации, я понял, что переоценивал ситуацию

Вокруг любой атомной станции есть как минимум 30-километровая зона, в которой постоянно производится мониторинг ситуации и экологической обстановки. Это не зона отчуждения, так как в ней можно жить людям и даже заниматься земледелием. Ограничения касаются только трехкилометровой зоны в непосредственной близости от станции. Но это опять же сделано только с целью обеспечения дополнительной безопасности, а не из-за того, что там опасно находиться.

Так выглядит зона безопасности вокруг Балаковской АЭС.

Наверное, самым опасным периодом работы станции является момент загрузки топлива. Именно в этот момент реактор открывается и есть небольшой риск попадания радиоактивных отходов в воздух. Правда, делается это не часто (в среднем один раз в год) и выброс будет очень незначительным.

Почему БелАЭС простаивает уже больше месяца?

Эксперт по ядерной и радиационной безопасности инженер-физик Андрей Ожаровский отметил Телеграфу, что на БелАЭС уже знают, что сломалось. «За месяц починить сложное оборудование не всегда возможно, а выяснить, что сломалось, они должны были», — сказал специалист.

Как подчеркнул Ожаровский, из-за того, что в Минэнерго не дают информацию, «они нас ставят в положение угадывателей». Он выдвинул две возможные версии произошедшего.

«В худшем случае произошло повторение того, что было на первом в мире энергоблоке с российским ВВЭР-1200 в Нововоронеже . Произошло короткое замыкание и полностью сгорел статор генератора. В белорусском Минэнерго как раз и говорят, что проблемы именно с генератором», — объяснил эксперт.

10 ноября 2016 года на 15-й день работы на 100% мощности энергоблок № 6 Нововоронежской АЭС отключён от сети защитой из-за отказа электрического генератора. Причиной отключения явилось короткое замыкание в обмотке статора турбогенератора. Для скорейшего включения энергоблока № 6 в сеть было принято решение о замене статора генератора на новый, ранее поставленный для энергоблока № 7 Нововоронежской АЭС.

Он рассказал, что после этого производители генератора обещали внести какие-то изменения в конструкцию. Но, по словам инженера-физика, «возможно, что-то не учли, и те изменения, сделанные впопыхах, оказались неудачными».

Производитель генератора — ПАО «Силовые машины» из Санкт-Петербурга. Как писал Ожаровский на сайте Bellona, исправление приводящих к короткому замыканию ошибок в конструкции статора генератора должно было происходить не только на Нововоронежской АЭС, но ещё на двух АЭС – второй Ленинградской АЭС и Белорусской АЭС .

Ожаровский отметил, что эта версия — «самая выгодная для атомщиков», потому что, по слухам, аварией в генераторе «могут прикрываться более серьезные проблемы».

«Возможно, они использовали сбой генератора, который вполне мог произойти, для того, чтобы что-то менять в ядерной части. И это самое опасное. Крайне непроверенная информация — но об этом говорят в Островце — что были проблемы с баками системы аварийного расхолаживания (бак схлопнулся из-за неправильно поданного давления). Эта аварийная система не задействована, когда энергоблок работает в нормальном режиме. То есть, если что-то идет не так, система включается. Без нее блок может работать, но в случае тяжелой аварии, без защиты она переходит в тяжелую стадию, — объяснил эксперт.

«Я не знаю, верить этому или нет, но сам Минэнерго своей информационной закрытостью подталкивает нас к тому, чтобы мы это обсуждали», — подчеркнул Андрей Ожаровский.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Сколько это еще может продлиться?

«Я внимательно следил за похожей остановкой в Нововоронеже, и там потребовалось полгода или больше. Но это худший случай, когда они меняли целиком агрегат», — отметил собеседник.

Если на БелАЭС действительно похожая ситуация и неработоспособный весь генератор, то, по словам эксперта, нужно будет заказывать новое оборудование, которое должно быть изготовлено и доставлено.

Кстати, 27 июля на Белорусской атомной электростанции началась «горячая» обкатка второго энергоблока. Специалисты начали проверять работу оборудования. Нужно, чтобы оно соответствовало требованиям проектной документации.

Мнение авторов или участников интервью может не совпадать с позицией редакции.

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000—1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Ленинградская АЭС. Первые РБМК

Теперь перейдем к самым крупным АЭС, с серийными блоками гигаваттной мощности. Начнем по хронологии и с реакторов РБМК.

Ленинградаская АЭС и ее энергоблоки. Графика автора

Именно на реакторах РБМК СССР планировал масштабно развивать атомную энергетику в 1970-е годы для удовлетворения энергодефицита в европейской части страны, поскольку технологию изготовления корпусов гигаваттных ВВЭР осваивать не успевал. А активная зона реактора РБМК собирается как из кубиков, изготовление компонентов для нее было освоено промышленностью. Поэтому, например, ее можно масштабировать и увеличивать. Например, на Игналинской АЭС построили два РБМК мощностью уже 1500 МВт, хотя и в тех же габаритах. Но были проекты и с увеличенной мощностью и активной зоной, до 2400 МВт. Вообще, сам реактор РБМК-1000  — это один из крупнейших в мире реакторов, там только диаметр активной зоны более 11 м.

Верхняя плита реактора РБМК — одного из самых больших реакторов в мире

У РБМК есть ряд преимуществ перед ВВЭР. Например, он не требует остановки для перегрузки топлива, его можно перегружать, отключая отдельные каналы прямо на работающем реакторе.  Из-за этого он позволяет облучать в каналах отдельные сборки-мишени и нарабатывать полезные изотопы, как, например, Co-60, который сейчас и производят на Ленинградской АЭС.

Но есть и ряд недостатков. Это, например, и сложность управления, и отсутствие защитной оболочки-контейнмента, и другие недостатки конструкции, которые не были своевременно устранены из-за гонки масштабного строительства АЭС в СССР в 1970-е и 1980-е. Все это привело к главной трагедии, сделавшей реактор РБМК печально известным на весь мир – Чернобыльской катастрофе. Именно такие реакторы были на этой АЭС. После аварии 1986-года реакторы РБМК доработали и модернизировали, устранив большинство недостатков. Поэтому сегодняшние РБМК все же существенно отличаются от дочернобыльских.

Два энергоблока с ВВЭР-1200 на Ленингрдаской АЭС-2. Один уже сдан (справа), второй строится.

Два энергоблока первой очереди Ленинградской АЭС заработали в 1973 и 1975 годах, они уже отработали по 45 лет и остановлены в 2018 и 2020 годах. Им на смену были построены и синхронно с отключением старых блоков были подключены два новых энергоблока с реакторами ВВЭР-1200. Так что теперь Ленинградская АЭС – единственная российская, где одновременно работают реакторы разных типов – РБМК-1000 и ВВЭР-1200. Кстати, при этом мощность АЭС выросла на 400 МВт, и теперь это самая мощная АЭС России. Сейчас ЛАЭС обеспечивает электроэнергией Ленинградскую область более чем на 50%, а также частично снабжает теплом ближайший город атомщиков — Сосновый бор.

Мне дважды доводилось бывать на ЛАЭС-2, поэтому я видел новые энергоблоки и в строящемся виде, и тут же впервые побывал на уже работающем энергоблоке с ВВЭР-1200. 

Предыстория

28 сентября 1942 года Госкомитет обороны СССР утвердил создание специальной ядерной лаборатории в Академии наук, а также принял решение разрешить производство урана. С 2005 года эта дата отмечается как День ядерной науки.

Российская атомная промышленность относится к 1940-м годам, когда она имела стратегическое значение – главным образом потому, что ее соперники пытались создать ядерное оружие.

После окончания ВОВ государство активизировало исследования и финансировало инициативу по созданию подобного оружия в СССР.

20 августа 1945 года специальный комитет начал исследования, посвященные урановому проекту. Главой Комитета стал Лаврентий Берия.

Это событие стало поворотным моментом. На следующий год развернули обширную программу.

Проект контролировал Игорь Курчатов, также известный как отец атомной бомбы и пионер ядерной энергии для гражданского использования.

Новая программа позволила использовать ядерную энергию в различных секторах экономики, таких как транспорт и энергетика.

Это был рассвет новой российской ядерной эры. В последующие десятилетия у нее были максимумы и минимумы, среди которых  Чернобыльская катастрофа.

Российские ученые-ядерщики работали над крупномасштабными проектами, производя технологические достижения и превращая ядерный сектор в одну из самых успешных частей экономики.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Первая авария произошла в штате Пенсильвания на станции Три-Майл-Айленд 28 марта 1979 года.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США — лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Конструкция и действие ядерной установки

Сердцем любой установки является ядерный реактор, от которого напрямую зависит, как работает атомная электростанция. Внутри него происходит распад тяжелых ядер на более мелкие фрагменты. Находясь в состоянии сильного возбуждения, они начинают испускать нейтроны и другие частицы.

Воздействие нейтронов приводит к новым делениям, после чего их становится еще больше и в результате возникают непрерывные самоподдерживающиеся расщепления, известные как цепная реакция. Данный процесс осуществляется с выделением большого количества энергии, которая является основной целью всей работы АЭС и определяет ее мощность.

Примерно 85% от общего количества энергии высвобождается за очень короткий промежуток времени от начала реакции. Остальные 15% дает радиоактивный распад продуктов деления после излучения ими нейтронов. После распада атомы приходят в более стабильное состояние, а сам процесс продолжается и по окончании деления.

Типовой ядерный реактор включает в себя следующие компоненты:

  • Обогащенный уран и другое ядерное топливо.
  • Теплоноситель, с помощью которого выводится энергия, полученная при работе реактора.
  • Регулировочные стержни.
  • Замедлитель нейтронов.
  • Защитная оболочка против излучения.

В активную зону установки помещены ТВЭЛ – тепловыделяющие элементы, содержащие ядерное топливо. Они скомпонованы в кассеты, по нескольку десятков элементов. Внутри каждой кассеты имеются каналы, по которым циркулирует теплоноситель. С помощью ТВЭЛ можно регулировать уровень мощности реактора.

Принцип такой регулировки заключается в следующем:

  • Топливный стержень должен иметь определенную критическую массу, по достижении которой и начинается ядерная реакция.
  • Каждый отдельный стержень имеет массу, не дотягивающую до критической. Реакция будет происходить, если в активную зону будут помещены все стержни.
  • Путем погружения и извлечения топливных стержней, реакцию можно сделать управляемой, в том числе регулировать мощность.
  • Когда значение массы превышает критическое, происходит выброс нейтронов топливными веществами. Далее наступает столкновение выброшенных частиц с атомами.
  • Все это приводит к образованию нестабильного изотопа. Его распад наступает сразу же, с выделением тепла и энергии в виде гамма-излучения.

Во время столкновения кинетическая энергия частиц переходит друг к другу и число распадов еще больше увеличивается со скоростью геометрической прогрессии. При отсутствии управления такая реакция происходит мгновенно и сопровождается сильным взрывом, в реакторе этот процесс постоянно контролируется.

Атомные электростанции с трехконтурным реактором:

Трехконтурная схема используется на атомных электростанциях с реакторами типа БН («быстрый натриевый»). Работа таких реакторов основана на быстрых нейтронах, в качестве теплоносителя используется радиоактивный жидкий натрий. Для исключения его контакта с водой в конструкции реактора предусмотрен дополнительный контур, в котором используется натрий без радиоактивных свойств; это обеспечивает трехконтурный тип схемы.

Современный 3-контурный реактор БН-800, разработанный в 80-х – 90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.

В рассматриваемом реакторе могут применяться различные виды топлива — обычные с окисью урана или МОКС-топливо на основе урана и плутония. Использование последнего приносит ряд преимуществ: во-первых, в этом случае могут быть использованы запасы энергетического плутония, во-вторых, появляется возможность утилизации оружейного плутония и сжигания изотопов актиноидов, содержащихся в облученном топливе тепловых реакторов и являющихся долгоживущими.

Показатель электрической мощности модели — 880 мегаватт, тепловой мощности — 2100 мегаватт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector