Принципиальная тепловая схема аэс

Конструкция и действие ядерной установки

Сердцем любой установки является ядерный реактор, от которого напрямую зависит, как работает атомная электростанция. Внутри него происходит распад тяжелых ядер на более мелкие фрагменты. Находясь в состоянии сильного возбуждения, они начинают испускать нейтроны и другие частицы.

Воздействие нейтронов приводит к новым делениям, после чего их становится еще больше и в результате возникают непрерывные самоподдерживающиеся расщепления, известные как цепная реакция. Данный процесс осуществляется с выделением большого количества энергии, которая является основной целью всей работы АЭС и определяет ее мощность.

Примерно 85% от общего количества энергии высвобождается за очень короткий промежуток времени от начала реакции. Остальные 15% дает радиоактивный распад продуктов деления после излучения ими нейтронов. После распада атомы приходят в более стабильное состояние, а сам процесс продолжается и по окончании деления.

Типовой ядерный реактор включает в себя следующие компоненты:

  • Обогащенный уран и другое ядерное топливо.
  • Теплоноситель, с помощью которого выводится энергия, полученная при работе реактора.
  • Регулировочные стержни.
  • Замедлитель нейтронов.
  • Защитная оболочка против излучения.

В активную зону установки помещены ТВЭЛ – тепловыделяющие элементы, содержащие ядерное топливо. Они скомпонованы в кассеты, по нескольку десятков элементов. Внутри каждой кассеты имеются каналы, по которым циркулирует теплоноситель. С помощью ТВЭЛ можно регулировать уровень мощности реактора.

Принцип такой регулировки заключается в следующем:

  • Топливный стержень должен иметь определенную критическую массу, по достижении которой и начинается ядерная реакция.
  • Каждый отдельный стержень имеет массу, не дотягивающую до критической. Реакция будет происходить, если в активную зону будут помещены все стержни.
  • Путем погружения и извлечения топливных стержней, реакцию можно сделать управляемой, в том числе регулировать мощность.
  • Когда значение массы превышает критическое, происходит выброс нейтронов топливными веществами. Далее наступает столкновение выброшенных частиц с атомами.
  • Все это приводит к образованию нестабильного изотопа. Его распад наступает сразу же, с выделением тепла и энергии в виде гамма-излучения.

Во время столкновения кинетическая энергия частиц переходит друг к другу и число распадов еще больше увеличивается со скоростью геометрической прогрессии. При отсутствии управления такая реакция происходит мгновенно и сопровождается сильным взрывом, в реакторе этот процесс постоянно контролируется.

Охлаждение реактора

Атомные реакторы применяют для множества различных целей. Физическую научно-исследовательскую лабораторию в большей степени интересует свойство реактора создавать внутри него плотный поток нейтронов. Получаемые нейтроны могут быть использованы для проведения экспериментов в области ядерной физики или для бомбардировки мишеней с целью образования радиоактивных изотопов, также необходимых для исследовательских, медицинских и промышленных нужд. В этом смысле колоссальная энергия, рассеиваемая в виде тепла, представляет собой помеху, которая должна быть устранена с помощью определенных типов систем охлаждения реактора. С другой стороны, когда реакторы используют для получения электричества, продуцируемое ими тепло имеет огромную ценность. Здесь реальным недостатком является нежелательная радиоактивность реактора, в связи с чем последний должен быть тщательно герметизирован и хорошо экранирован. В энергетическом ядерном реакторе огромное количество продуцируемого в активной зоне тепла должно постоянно отводиться в виде водяного пара и поступать на турбины, вращающие электрогенераторы. Это происходит одним из двух способов. В реакторах с активной зоной, или замедлителем, выполненной из графита, избыточное тепло удаляет газ, проходящий сквозь эту зону. С другой стороны, в реакторах, где в качестве замедлителя использована легкая или тяжелая вода, удалять тепло из активной зоны можно принудительной циркуляцией воды. Вне зависимости от того, используется для охлаждения вода или газ, метод теплоотвода обязательно должен быть как адекватным, так и непрерывным, иначе активная зона и топливные контейнеры могут расплавиться и произойдет утечка большого количества радиоактивных веществ

В равной степени важно, чтобы система контроля за интенсивностью теплоотвода была чувствительной и эффективной, и скорость выделения тепла, даже на небольшой период времени, не превышала охлаждающей способности системы теплоотвода. Реактор можно остановить в случае подозрения на недостаточную функцию системы охлаждения, но даже и тогда продолжение охлаждения реактора очень важно, потому что, хотя тепло не выделяется как результат процесса ядерного деления, оно все еще продолжает образовываться из-за остаточной радиоактивности в топливных элементах

Сразу после остановки реактора это количество тепла составляет 5 % от того, которое генерировалось при работе на полную мощность. Поэтому продолжение непрерывного охлаждения ядерного топлива абсолютно необходимо.

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Устройство АЭС

Рейтинг:   / 63

Подробности
Родительская категория: Зона отчуждения
Категория: Наука

В обычных электростанциях, работающих на угле или природном газе, ископаемое топливо сжигают в топке и тепло пламени образует в котле пар. Этот пар — исторический двигатель индустриальной эпохи – с ревом устремляется под давлением, иногда достигающим 190 кгс/см2 при температуре до 1000 С, на огромный турбогенератор. Пар вращает мощную турбину, соединенную с гигантским генератором, вырабатывающим электричество. Такая современная электростанция дает более 1 млн кВт.ч энергии. Электростанции данного типа «прожорливы» в отношении топлива. Так, если применяют уголь, то каждый час необходимо сжигать его более чем 400 тон. Атомная электростанция «сжигает» беспламенное топливо, представленное ураном. Тепло выделяется в результате деления атомов в условиях сдерживаемой человеком цепной реакции.

Поскольку самого процесса сжигания как такового не происходит, выхлопные газы отсутствуют и, конечно же, нет загрязнения атмосферы двуокисью серы или углерода.

Ядерная «топка» представляет собой активную зону, объемом, меньшим, чем средний объем жилой комнаты в нашем доме. В ней содержится годовой запас ядерного топлива — более 100 т окиси урана в виде таблеток диаметром с наперсток. Около 10 млн этих крошечных таблеток аккуратно размещены в трубках длиной 3,7 м, или топливных стержнях, герметично закрытых для предотвращения утечки радиации. Ядерное топливо, используемое в современных атомных электростанциях, содержит только несколько процентов 235U,) в сравнении с 90 % содержания его в радиоактивном материале, раздробленном в атомном оружии на отдельные субкритические части. В результате вероятность того, что ядерный реактор взорвется наподобие атомной бомбы, отсутствует. Но несмотря на столь низкое содержание ядерного топлива, оно все же потенциально сильное вещество — в одной такой таблетке с массой 14 г выделяется энергии, по количеству равное той, что мы получаем при сжигании 0,6 м3 нефти.  Для того чтобы начать и поддерживать цепную реакцию на определенном уровне, топливные стержни надо внедрить в определенное вещество, преимущественно состоящее из легких химических элементов, цель которого состоит в торможении или замедлении» нейтронов, образующихся в результате деления 235U появившись при делении атома урана, эти нейтроны движутся с большой скоростью, но, как это ни странно, они будут более эффективными в плане расщепления других атомов урана в том случае, если сперва затормозятся в активной зоне реактора, столкнувшись с другими атомами легких элементов.

Существуют всевозможные вещества, которые применяют в качестве активной зоны или замедлителя реактора. Три из них применяют наиболее часто: графит (углерод), обычная (легкая) вода или «тяжелая» вода, т. е. вода, в которой водород заменен на дейтерий — более тяжелый изотоп водорода. Рассмотрение устройства активной зоны ядерного реактора, по-видимому, будет чрезмерно насыщено техническими деталями, что выходит за рамки нашей статьи, но оно оказывается чрезвычайно важным для понимания конструкции промышленных атомно-энергетических установок. Ключевыми элементами безопасной работы реактора служат регулирование цепной реакции, охлаждение активной зоны и защита. Реакторы должны проектироваться, изготовляться, работать и подвергаться проверке так, чтобы вероятность отказа любого из этих ключевых элементов была предельно мала, потому что в результате аварии огромное количество радиоактивности попадет в окружающую среду. Проектирование реакторов основано на принципе дублирования, т. е. создания многочисленных параллельных систем с таким расчетом, что если одна система откажет, вторая возьмет на себя ее функции

Это особенно важно для системы охлаждения реактора

Нововоронежская АЭС. Сухопутная колыбель ВВЭР

Нововоронежская АЭС — вид с пруда-охладителя ночью

Как и Белоярская АЭС, это одна из старейших АЭС страны. Первый ее энергоблок заработал в том  же 1964 году, всего через полгода после пуска АМБ-1. Но в отличии Белоярской АЭС, где отрабатывали технологию канальных уран-графитовых реакторов с ядерным перегревом пара, а затем технологии быстрых реакторов, в Нововоронеже занимались и занимаются освоением другого направления – водо-водяных реакторов. Здесь были построены все первые, головные блоки энергетических реакторов ВВЭР мощностью от 210 МВт, 440, 1000 и сейчас 1200. Всего на этой АЭС построено 7 энергоблоков – максимальное количество на российских АЭС.

Первый в мире энергоблок с ВВЭР-1000 на Нововоронежской АЭС

В настоящее время из них работают 4. Это один ВВЭР-440, один ВВЭР-1000 и два первых в нашей стране и мире ВВЭР-1200. Получается, что каждый из этих реакторов – самый первый в своем роде. В том числе и нынешний флагманский продукт отечественной атомной промышленности – энергоблок с реактором ВВЭР-1200, которые активно приходят на замену старых блоков на АЭС в России и строится для зарубежных заказчиков. В России их уже построено 4, и в разной стадии строительства за рубежом еще более 10 штук. 

Первые в мире и нашей стране два ВВЭР-1200 на Нововоронежской АЭС

Подробно про водо-водяные реакторы я рассказывал в прошлой статье про Кольскую АЭС. Коротко повторю, что эти реакторы отличаются от канальных графитовых тем что в них нет ни графитовой кладки, ни каналов. Это более компактные реакторы, топливо которых находится внутри прочного толстостенного металлического корпуса. Водо-водяной в названии реактора означает, что вода выступает в нем и замедлителем нейтронов и теплоносителем, который отводит тепло от ядерного топлива. Это реакторы, работающие по двухконтурной схеме, т.е. вода в самом реакторе и первом контуре нагревается до большой температуры – более 300 градусов, но не кипит, т.к. находится при этом под давлением более 150 атмосфер (для чего мощный корпус и нужен). Тепло через теплообменник передается второму контуру, где уже вода кипит, пар идет на турбину, ну и дальше обычная схема. КПД таких установок около 32% и выше.

Такой же тип водо-водяных реакторов используется и на атомных подводных лодках в силу ряда преимуществ, в первую очередь более компактных размеров. Собственно, изначально он для них и разрабатывался, но потом вышел на сушу и прочно обосновался в мирной атомной энергетике.  Сейчас это самый популярный тип реактора в мире. Более чем на 80% энергоблоках АЭС в мире работают водо-водяные реакторы под давлением.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

Атомная электростанция (АЭС) – это ядерная установка для производства электрической энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом).

Отличие АЭС от иных видов электростанций заключается в том, что ее конструкция включает в себя ядерный реактор, являющийся ее основным компонентом. В качестве топлива в ней применяется уран-235.

АЭС располагается на территории нескольких зданий, в которых размещается комплекс сооружений, систем и оборудования, требуемых для обеспечения ее работы.

В главном корпусе АЭС находится реакторный зал, в котором располагаются:

– реактор,

– специальный бассейн, служащий для выдержки ядерного топлива,

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы, а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.

Без мирного атома никак

Мировая экономика немыслима без атомной энергетики. На атомных электростанциях вырабатывается одна десятая всей производимой на планете электроэнергии. Сегодня 192 атомные электростанции работают в 31 стране мира. Как правило, все они имеют по несколько энергоблоков – технологических комплексов оборудования для производства электроэнергии, имеющих в своем составе ядерный реактор. Общее количество таких энергоблоков в мире составляет 451.

На первом месте по количеству АЭС находятся США – 62, на втором Франция – 19, третье место у Японии – 17. Россия занимает пятое место по количеству атомных электростанций. Их у нас 10 с 37 энергоблоками. Общая мощность всех АЭС мира составляет около 392 ГВт.

Атомная энергетика имеет много плюсов. Ключевые – высокая рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, как это происходит на тепловых электростанциях. Однако есть и серьезные минусы. В случае аварии на атомной электростанции продукты деления ядерного топлива, вырвавшиеся из реактора, могут надолго сделать непригодными для жизни большие территории, прилегающие к станции. Еще один минус – это проблема хранения и переработки отработанного ядерного топлива.

Реактор ВВЭР-1200

Флагманский продукт энергетического решения в составе интегрированного предложения Росатома – эволюционный реакторный дизайн ВВЭР-1200. Он был разработан на основе вариантов реактора ВВЭР-1000, которые строились для зарубежных заказчиков в 1990-е и 2000-е годы: АЭС «Бушер» (Иран), АЭС «Кунданкулам» (Индия), АЭС «Тяньвань» (Китай). Каждый параметр реактора постарались улучшить, а так же внедрить ряд дополнительных систем безопасности, позволяющих снизить вероятность выхода радиации при любых авариях и их сочетаниях за пределы герметичного реакторного отделения – контейнмента. 

В итоге ВВЭР-1200 отличается повышенной на 20% мощностью при сопоставимых с ВВЭР-1000 размерах оборудования, сроком службы в 60 лет, возможностью маневра мощностью в интересах энергосистемы, высоким КИУМ (90%), возможностью работать 18 месяцев без перегрузки топлива и другими улучшенными удельными показателями.

Научный руководитель проекта – РНЦ «Курчатовский институт» (г. Москва); разработчик — ОКБ «Гидропресс» (г. Подольск), основной изготовитель – «Атоммаш» (г. Волгодонск). 

Проект предусматривает выгорание топлива до 70 МВт•сут/кгU. Сейсмика (SL-2) —  ≤ 0,3 g. В качестве опций возможно использование тихоходной турбины и маневренного блока (диапазон 100-50-100). 

Довольно много переделок коснулось внутренних элементов реактора (шахты, выгородки, блока защитных труб, датчиков и т.д.), как в целях  предотвращения различных аварий, так и для обеспечения 60-летнего срока службы. В перспективе возможно использование МОКС-топлива.

В технологии ВВЭР используется двухконтурная ядерная паропроизводящая корпусная установка с реактором на тепловых нейтронах, в котором теплоносителем и замедлителем является обычная вода под давлением. Конструкция включает в себя четыре петли охлаждения с парогенератором, главным циркуляционным насосом (ГЦН), компенсатор давления, сбросная и аварийная арматура на паропроводах, емкости системы аварийного охлаждения активной зоны (САОЗ) реактора. Таким образом, ВВЭР-1200 сочетает в себе надежность давно проверенных инженерных решений с комплексом активных и пассивных систем безопасности, доработанных с учетом «постфукусимских» требований.

Технические решения, используемые в ВВЭР-1200 – такие как бассейн выдержки отработанного топлива внутри контайнмента, фильтры на выходе из межоболочного вентилируемого пространства, уникальная «ловушка расплава» с жертвенным материалом, не имеющая аналогов пассивная система отвода тепла, – позволяют называть его реакторной установкой поколения III+. 

Интересны проектные решения системы САОЗ. Это емкости с холодной борной кислотой под давлением. В случае разрыва корпуса или трубопроводов они обеспечивают ввод борной кислоты в реактор, глуша его и обеспечивая охлаждение. Применение этой, а также других систем в комплексе гарантирует высокий уровень внутренней безопасности реакторной установки.

Первый энергоблок с реактором ВВЭР-1200 – энергоблок №6 Нововоронежской АЭС-2 – был включен в энергосистему России в августе 2016 года. Энергоблоки поколения III+ в настоящее время сооружаются в США, Франции и других странах, однако именно шестой энергоблок Нововоронежской АЭС стал первым в мире блоком последнего поколения, который вышел на этап физического пуска и опытно-промышленную эксплуатацию. Там же строится ещё один аналогичный блок. 

ВВЭР-1200 также используется на площадке Ленинградской АЭС-2 (энергоблок №5 ЛАЭС уже построен) и на Белорусской АЭС (близ г. Островец Гродненской области). Генеральным подрядчиком сооружения всех этих новых энергоблоков является Группа компаний ASE.

Справочно:

В свое время идея реактора ВВЭР была предложена в Курчатовском институте С.М. Фейнбергом. Работы над проектом начались в 1954 году, в 1955 году ОКБ «Гидропресс» приступило к его разработке. Научное руководство осуществляли И.В. Курчатов и А.П. Александров. Общее название реакторов этого типа в других странах –  PWR, они являются основой мировой мирной ядерной энергетики. Первая станция с таким реактором была запущена в США в 1957 году (АЭС «Шиппингпорт»). Первый советский ВВЭР (модификации ВВЭР-210) был введен в эксплуатацию в 1964 году на энергоблоке №1 Нововоронежской АЭС. Первой зарубежной станцией с реактором ВВЭР стала введённая в работу в 1966 году АЭС «Райнсберг» (ГДР, позже – Федеративная республика Германия).

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232).  Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

Схема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

Цепная реакция

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

ТВЭЛы, помещенные в топливную кассету

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector