Чем отличаются крылатые и баллистические ракеты и какие они ещё бывают?

Технические особенности, достоинства и недостатки

Конструкция разных типов крылатых ракет сходна. Все они имеют отсек для размещения топлива, боевую часть, а также двигатель с воздухозаборником. Кроме того, значительное количество КР оснащается стартовым двигателем, задача которого – придание начального ускорения летательному аппарату. Для удобства размещения в пусковом контейнере крылья  нередко делают складными.

Запуск КР с боевого корабля

От обычных типов ракет они отличаются траекторией и высотой полета: как правило, полет проходит предельно низко с огибанием рельефа местности. Кроме того, современные крылатые ракеты оснащают турбореактивными или прямоточными двигателями, что позволяет им преодолевать очень значительные расстояния. От обычных беспилотных летательных аппаратов (БПЛА) они отличаются отсутствием наземного оператора, управляющего их полетом.

Важнейшим элементом любой КР является ее система наведения, во многом именно она определяет эффективность этого оружия. Первые крылатые ракеты использовали радиолокационные системы, которые прекрасно подходили для обнаружения кораблей на ровной морской поверхности, но плохо работали над сушей с ее сложным рельефом. Именно по этой причине КР долго оставались практически исключительно противокорабельным оружием.

В настоящее время ракеты используют более совершенные системы наведения и коррекции курса. Для определения своего месторасположения они сканируют земную поверхность, сверяя ее затем с электронными картами, заложенными в ЭВМ. Кроме того, широко используется инерциальная навигация и системы глобального позиционирования типа ГЛОНАСС или GPS.

Американская КР “Плутон” с ядерной силовой установкой. Проект так и не был реализован

Отдельно следует сказать о крылатых ракетах с ядерной силовой установкой. Созданием подобных летательных аппаратов занимались в СССР и США на заре атомной эры – в 60-е годы прошлого столетия. Американцы успешно провели огневые испытания подобного двигателя, но запускать крылатую ракету с ЯЭУ они попросту побоялись из-за высокого риска радиоактивного заражения местности. Проект был тихо закрыт.

Особенности конструкции крылатых ракет обуславливают основные преимущества и недостатки этого вида высокоточного оружия. К их несомненным достоинствам можно отнести следующее:

  • КР способны двигаться по произвольной траектории, что создает серьезные проблемы для противоракетной обороны неприятеля;
  • Использование для полета малых и сверхмалых высот значительно затрудняет их обнаружение радарами;
  • Совершенные системы навигации и наведения позволяют современным крылатым ракетам поражать с большой точностью даже малоразмерные цели.

https://youtube.com/watch?v=BCmMNPCBxCQ

Есть у КР и недостатки:

  • Значительная стоимость по сравнению с другими боеприпасами;
  • Относительно малая мощность всех видов боевых частей, за исключением ядерных;
  • Большинство из них имеет сравнительно небольшую скорость полета.

Выход на гиперзвук

С 1930-х годов идут исследования гиперзвукового полета, то есть полета на скоростях, превышающих скорость звука в 5 и более раз. Не менее четырех десятилетий идут работы над гиперзвуковыми управляемыми ракетами. Резкое сокращение времени полета способствует преодолению современной и даже существующей пока только в разработках ПВО/ПРО, поражению маневренных целей в глубине обороны противника. Гиперзвуковые ракеты преодолевают «высотобоязнь» — высоты полета возвращаются к 10—30 км.

В 1997 году НПО «Радуга» представило гиперзвуковой экспериментальный летательный аппарат Х-90 со складным треугольным крылом дальностью полета до 3 000 км, маршевым гиперзвуковым прямоточным воздушно-реактивным двигателем. Для выхода на сверхзвуковой режим и запуска маршевого двигателя используется твердотопливный ускоритель. А ведь это старая уже разработка, едва не похороненная «постперестроечным» периодом. Неудивительны признания зарубежных специалистов, что в работах над гиперзвуковыми аппаратами они используют ряд советских разработок.

Гиперзвуковой «экспериментальный летательный аппарат» Х-90, Россия. Длина — 12 м. Дальность пуска — 3 000 км, скорость полета — 4—5М   В США с 1998 года реализуется программа ARRDM по созданию гиперзвуковых ракет класса «воздух-земля» и «корабль-земля». Согласно расчетам, ракета со скоростью 8М тех же размеров, что и AGM-86, пролетит 1 400 км всего за 12 минут, а при столкновении с целью обеспечит большие глубину проникновения и разрушительное действие.   «Крыла» в строгом значении этого слова у такой ракеты уже может и не быть. На этих скоростях хватает подъемной силы, действующей на корпус, которому придается соответствующий профиль. Так, корпус прототипа ракеты фирмы «Боинг» выполнен по схеме «волнолет» — для создания подъемной силы используется поток за ударной волной, порождаемой при гиперзвуковом полете. Рассматриваются комбинированные двигательные установки (в СССР ракету Х-31 с комбинированным прямоточным двигателем создали уже в 1980-е годы), установки изменяемого цикла — ракетно-прямоточные, турбопрямоточные. Высокие скорости способствуют реализации и такой идеи, как ионизация обтекающего ракету потока воздуха, электромагнитное управление потоком и создание плазменного шлейфа, снижающего заметность ракеты.   Займут ли гиперзвуковые аппараты место в ряду стратегических крылатых ракет или станут маневрирующими боеголовками баллистических ракет — вопрос недалекого будущего. В любом случае поиски нового облика крылатых ракет большой дальности идут весьма активно.

Алюминий

«Крылатый металл», любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен.

Технологии Они хотели обогнать СССР и США: космическая программа Замбии

Чтобы он стал хорошим конструкционным материалом, из него приходится делать сплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мы его чаще всего зовем) — такое имя дала сплаву немецкая фирма, впервые его предложившая в 1909 году (от названия города Дюрен). Этот сплав, кроме алюминия, содержит небольшие количества меди и марганца, резко повышающие его прочность и жесткость. Но есть у дюраля и недостатки: его нельзя сваривать и сложно штамповать (нужна термообработка). Полную прочность он набирает со временем, этот процесс назвали «старением», а после термообработки состаривать сплав нужно заново. Поэтому детали из него соединяют клепкой и болтами.

В ракете он годится только на «сухие» отсеки — клепаная конструкция не гарантирует герметичности под давлением. Сплавы, содержащие магний (обычно не больше 6%), можно деформировать и сваривать. Именно их больше всего на ракете Р-7 (в частности, из них изготовлены все баки).

Американские инженеры имели в своем распоряжении более прочные алюминиевые сплавы, содержащие до десятка разных компонентов. Но прежде всего наши сплавы проигрывали заокеанским по разбросу свойств. Понятно, что разные образцы могут немного отличаться по составу, а это приводит к разнице в механических свойствах. В конструкции часто приходится полагаться не на среднюю прочность, а на минимальную, или гарантированную, которая у наших сплавов могла быть заметно ниже средней.

В последней четверти XX века прогресс в металлургии привел к появлению алюминий-литиевых сплавов. Если до этого добавки в алюминий были направлены только на увеличение прочности, то литий позволял сделать сплав заметно более легким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты «Энергия», из него же делают сейчас и баки «Шаттлов».

Наконец, самый экзотический материал на основе алюминия — боралюминиевый композит, где алюминию отведена та же роль, что и эпоксидной смоле в стеклопластике: он удерживает вместе высокопрочные волокна бора. Этот материал только-только начал внедряться в отечественную космонавтику — из него сделана ферма между баками последней модификации разгонного блока «ДМ-SL», задействованного в проекте «Морской старт». Выбор конструктора за прошедшие 50 лет стал намного богаче. Тем не менее как тогда, так и сейчас алюминий — металл №1 в ракете. Но, конечно же, есть и целый ряд других металлов, без которых ракета не сможет полететь.

Титан и титановые сплавы Самый модный металл космического века. Вопреки широко распространенному мнению, титан не очень широко применяется в ракетной технике — из титановых сплавов в основном делают газовые баллоны высокого давления (особенно для гелия). Титановые сплавы становятся прочнее, если поместить их в баки с жидким кислородом или жидким водородом, в результате это позволяет снизить их массу. На космическом корабле ТКС, который, правда, так ни разу и не полетел с космонавтами, привод стыковочных механизмов был пневматическим, воздух для него хранился в нескольких 36-литровых шар-баллонах из титана с рабочим давлением 330 атмосфер. Каждый такой баллон весил 19 килограммов. Это почти впятеро легче, чем стандартный сварочный баллон такой же вместимости, но рассчитанный на вдвое меньшее давление!

Где в первый раз применили много ракет

Естественно, что на этом применение ракет не закончилось, а только началось. Настоящим полигоном для проверки применения нового оружия стала одна из русско-турецких войн, шедшая с 1828 по 1829 год. Только за год сражений артиллерия Российской Империи выпустила по противнику больше 10 000 ракет. Тогда же их научились запускать не только с земли. Пусковые установки монтировали на корабли и паромы. Автором подобной инновации является генерал К.А. Шильдер.

Первые образцы ракет требовали существенных доработок. Они были не очень точными, уступая даже пушкам, часто взрывались при запуске, имели тяжелые пусковые установки и весили довольно много. Все это мешало им распространяться, но работы велись и занимался этим все тот же генерал К.А. Шильдер. Но самым большим и серьезным его достижением была установка ракетного оружия на подводные лодки, об истории которых я рассказывал в отдельной статье. Вот только технологии были слабоваты для реализации его идей, но перспективы у них были.

Генерал К.А. Шильдер предложил запускать ракеты не только с земли, но так же с кораблей и даже подводных лодок.

Благодаря улучшению ракет, к середине 19 века удалось добиться увеличения дальности до 4 км и увеличения точности, а скорость стрельбы выросла до 6 выстрелов в минуту. Это был отличный результат для того времени. В результате с 1845 по 1850 год было собрано почти 50 000 единиц этого типа вооружения. При этом производство состояло всего из 30 рабочих.

Естественно, для того, чтобы достичь чего-то существенного, надо было производить намного больше, ведь другие страны тоже не стояли на месте и работали над своими системами ведения огня. В частности полным ходом шла работа над орудиями с нарезным стволом, которые обеспечивали бы бОльшую дальность и точность стрельбы. На этом этапе работы проводил К.И. Константинов.

Новые разработки ракет РФ

В наши дни идет перевооружение армии России новыми ракетами:

  • РС-24 «Ярс», которыми поэтапно заменяются МБР РС-18 и РС-20 (по мере окончания сроков их эксплуатации);
  • РС-26 «Рубеж» — МБР повышенной точности;
  • РС-28 «Сармат» — тяжелая МБР, эффективно обходит американские средства ПРО, особенно за счет пусков через Южный полюс;
  • Х-50 — новая оперативно-тактическая авиационная ракета воздух-земля, фактически незаметная для средств ПВО;
  • С-500 «Прометей» — новейшая ракетная система ПВО и ПРО.

Также разрабатывается новейший РК «Циркон-С» со стратегической гиперзвуковой ракетой следующего поколения.

Виды ракет России

Межконтинентальные баллистические ракеты

По типу размещения межконтинентальные баллистические ракеты (МБР) делят на пускаемые:

  • из шахтных пусковых установок (ШПУ) — РС-18, PC-20;
  • с мобильных пусковых устройств на основе колесного шасси — «Тополь»;
  • с железнодорожных устройств — РТ-23УТТХ «Молодец»;
  • с морского / океанского дна — «Скиф»;
  • с подлодок — «Булава».


Межконтинентальная баллистическая ракета РС-20

Используемые сегодня ШПУ отлично защищают от поражающих факторов ядерного взрыва и довольно хорошо маскируют подготовку к пуску. Прочие способы размещения ракет гарантируют высокую мобильность и, соответственно, труднее обнаруживаются, но ограничивают армию и ВМФ в габаритах и массе МБР.

Крылатые ракеты высокой точности

Пять наигрознейших крылатых ракет отечественного производства:

  1. Семейство «Калибр». Преимущественно ими наносятся удары по живой силе и инфраструктуре боевиков «оппозиции» и откровенных террористов в Сирии. Разработка, стартовавшая в 1980-х годах на основе стратегической ядерной 3М10 и противокорабельной «Альфа», завершена в 1993 году. В НАТО кодифицируются как Sizzler. Дальность удара по морским объектам — до 350 км, по береговым — до 2600;
  2. Стратегическая ракета класса воздух-земля Х-101 (вариация с ядерной боеголовкой — Х-102). Спроектирована в КБ «Радуга» к 2013 году. Тоже применялась в Сирии по вышеуказанным целям. В основном входит в комплект вооружения бомбардировщиков Ту-22 и Ту-160. Точные параметры Х-101 скрыты от публики, но по неофициальным сведениям ее максимальная дальность — около 9 тыс. км;
  3. Противокорабельная П-270 «Москит» (в НАТО кодифицируется как SS-N-22 Sunburn). Создана в 1970-х в СССР. Может топить любые корабли водоизмещением до 20 тыс. тонн. Дальность — до 120 км по маловысотной и 250 км по высотной траектории. Для преодоления системы ПВО (ПРО) делает маневр «змейка»;
  4. Стратегическая авиационная Х-55, класса воздух-земля — для бомбардировщиков Ту-95 и Ту-160. Движется на дозвуковой скорости, огибая находящийся внизу ландшафт, чем сильно усложняет перехват. Мощность взрыва более чем в 20 раз превосходит показатель пресловутой Little Boy, сброшенной американцами в 1945-м на Хиросиму;
  5. П-700 «Гранит» — противокорабельная ракета большой дальности, для разгрома крупных корабельных и корабельно-авиационных группировок противника. Поражает объекты на дистанции до 550 км. Устройствами П-700 вооружен, среди прочих, тяжелый крейсер-авианосец «Адмирал Кузнецов».


Пуск противокорабельной ракеты П-700 «Гранит»

Противокорабельные ракеты

Помимо вышеупомянутых крылатых ПКР, нужно отметить ракету Х-35 вместе с РК «Уран», созданную в 1995 году гос.

Х-35 способна топить корабли водоизмещением до 5 тыс. т. Благодаря компактным габаритам и небольшой массе используется в качестве вооружения кораблей любого класса, включая корветы и катера, а также вооружения различных летательных аппаратов, включая вертолеты и легкие истребители. Для пусков Х-35 созданы береговые РК «Бал».

Авиационные ракеты России

Особо грозное достояние российских ВВС — модернизированная вариация Р-37М «Стрела». Эта управляемая ракета типа воздух-воздух является № 1 в мире по дальности.

В НАТО она кодифицируется как AA-13 «Arrow».

Применяется в качестве вооружения:

  • тяжелых истребителей Су-27;
  • сверхманевренных истребителей Су-35;
  • истребителей-перехватчиков МиГ-31БМ.

Уникальными свойствами Р-37М являются динамическая неустойчивость и высочайшая маневренность. Они и позволяют ей, обойдя все вражеские противоракетные средства, поразить летучую цель, которая приблизилась к истребителю на 300 и менее километров.

По оценкам ряда военных экспертов, Р-37М и аналогичная китайская PL-15 способны с легкостью сбивать американские воздушные топливозаправщики, служащие для обеспечения беспосадочных полетов их стратегических бомбардировщиков, а также самолеты разведки, управления и радиоэлектронной борьбы (РЭБ). Победы в сегодняшних войнах просто невозможны без перечисленных подсобных ЛА, при этом эффективность новейших ракет воздух-воздух России и КНР лишает США преимущества в воздухе.

Суперновое отечественное оружие класса воздух-поверхность — гиперзвуковая ракета Х-47М2 «Кинжал», предназначенная для разрушения наземных и наводных объектов. По информации авторитетных СМИ, РК «Кинжал» является авиационной модификацией семейства «Искандер». Дальность устройства с 500-кг боевой частью определяется свойствами бомбардировщика и составляет от 2 тыс. до 3 тыс. километров.


Самолет МиГ-31 с ракетой Х-47М2 «Кинжал»

Распространение

Первая в мире межконтинентальная баллистическая ракета Р-7 была успешно испытана в СССР 21 августа 1957 года, принята на вооружение в 1960 году. Американская межконтинентальная баллистическая ракета SM-65 Atlas была успешно испытана в 1958 году, принята на вооружение в 1959 году (на год раньше, чем Р-7). В настоящее время межконтинентальные баллистические ракеты имеются на вооружении России, США, Великобритании, Франции и Китая.

Израиль в вопросе наличия у него ракет межконтинентальной дальности придерживается той же политики, что и в вопросе обладания ядерным оружием — не подтверждает и не отрицает наличия таких ракет. Таким образом, Израиль извлекает из ситуации двойную выгоду: не присоединяясь к международному договору по контролю за распространением ракетных технологий и одновременно держа в напряжении страны региона относительно своих реальных возможностей. При этом, как российские источники, так и источники в других странах, учитывая наличие у этой страны отработанной трёхступенчатой твердотопливной космической ракеты-носителя Шавит, не сомневаются в возможностях Израиля по созданию МБР. Первые две ступени РН «Шавит» имеют «боевое» происхождение, в качестве таковых использованы ступени баллистической ракеты средней дальности . Достоверные данные о характеристиках ракеты , считающейся межконтинентальным боевым вариантом РН «Шавит», отсутствуют.

Ведут разработку своих МБР Индия, КНДР и Пакистан, причём:

  • Индия в апреле 2012 года успешно провела первое лётное испытание МБР типа Агни-V, её полномасштабное производство и принятие на вооружение были запланированы на 2014 год, а возможности небоевых индийских космических ракет-носителей (например, GSLV) давно превышают требуемые для МБР массо-энергетические характеристики;
  • Северокорейская МБР , начало работ над которой относят к 1987 году, считается рядом источников испытанной под видом космических ракет-носителей серии «Ынха».

Иран, по мнению некоторых обозревателей[каких?], при помощи программы освоения космоса разработает технологии, позволяющие создать собственную МБР. В частности, иранская космическая ракета-носитель Сафир-2 при запуске по суборбитальной траектории может доставить боезаряд на расстояние 4000—4500 км.

ЮАР для противостояния как странам советского блока, так и Запада в 1980-х годах разрабатывала МБР RSA-3 (при содействии Израиля), но отказалась от принятия её на вооружение после краха режима апартеида.

Как нож сквозь масло

Впрочем, в 2005 году до успеха было еще далеко. Разработка планирующего гиперзвукового крылатого боевого блока (глайдера) столкнулась с серьезными трудностями. Преодолеть их «с наскока» оказалось невозможно, и первый пуск с подвижной пусковой установки, осуществленный с космодрома «Плесецк» по полигону «Кура» 28 сентября 2011 года, оказался неудачным. «Авангард» тогда поразить цель не смог. Но разработчиков это не остановило, и во время второго пуска 23 мая 2012 года «Авангард» сработал штатно.

Последующие пуски закрепили этот успех. Результаты, достигнутые в рамках ОКР «Авангард», оказались многообещающими. Как следствие, Владимир Путин решил официально объявить об успешном завершении в России испытаний перспективного ракетного комплекса стратегического назначения с принципиально новым боевым оснащением — планирующим крылатым боевым блоком. Это произошло в первый день календарной весны 2020 года.

О характеристиках нового ракетного комплекса президент рассказал в своем послании к Федеральному собранию.

Иными словами, «Авангард» способен пройти сквозь любую противоракетную и противовоздушную оборону, как нож сквозь масло. При этом расходы России на производство «Авангардов» обещают быть в разы меньше, чем затраты на создание систем, способных хотя бы в теории остановить стартовавший «Авангард».

По словам президента России, использование новых композитных материалов позволило решить ключевой для комплекса вопрос — проблему длительного управляемого полета планирующего крылатого блока практически в условиях плазмообразования.

Командующий российскими Ракетными войсками стратегического назначения Сергей Каракаев дополнил это сообщение информацией, согласно которой планирующий блок отличается от традиционных боевых блоков, осуществляющих полет к цели по баллистической траектории, тем, что траектория его полета проходит на высоте нескольких десятков километров в плотных слоях атмосферы. Планирующий блок будет идти к цели вне зон обнаружения и поражения как существующих, так и перспективных противоракетных систем. Кроме того, его маневренность позволит уклониться от воздействия таких систем.

20 марта 2020 года СМИ опубликовали сведения о мощности ядерной боевой части «Авангарда». По словам источника, она составляет более двух мегатонн в тротиловом эквиваленте. Этого более чем достаточно для уничтожения «особо важных целей».

Напомним, что мощность атомной бомбы «Малыш», сброшенной американцами 6 августа 1945 года на Нагасаки, по разным сведениям, составляла «всего» от 13 до 18 килотонн.

Основные характеристики

Снаряды с баллистическими наконечниками

Основные характеристики артиллерийских орудий подразделяются на баллистические, конструктивные, эксплуатационные и обобщенные. Характеристики определяют дальнобойность, точность, скорострельность, могущество снарядов, параметры маневренности, надежность и удобство обслуживания.

Баллистические характеристики являются определяющими для дальнобойности и возможности применения различных типов снарядов. К ним относятся:

  • начальная скорость снаряда, которая определяется в момент вылета снаряда из ствола и прекращения действия на него пороховых газов. Является основной характеристикой орудия;
  • масса снаряда определяет могущество применяемого боеприпаса. В зависимости от формы снаряда и его конструктивных особенностей напрямую влияет на поражающие характеристики снаряда и эффективность его действия;
  • максимальная дальность стрельбы определяет дальнобойность орудия в горизонтальной плоскости и зависит от начальной скорости снаряда, его массы и характеристик, условий и траектории стрельбы;
  • дальность прямого выстрела определяется как расстояние, на котором возможна стрельба по настильной траектории, высота которой не превышает высоту цели;
  • масса порохового заряда напрямую влияет на начальную скорость снаряда и определяет дальностные характеристики стрельбы и бронебойность;
  • максимальное давление пороховых газов в канале ствола зависит от массы порохового заряда, его эффективности и различных видов потерь, возникающих при выстреле.

Методы измерения калибра

К конструктивным характеристикам орудий относятся:

  • калибр ствола — наиболее важная характеристика орудия, определяющая его могущество. Определяется как внутренний диаметр канала гладкоствольных орудий, либо как расстояние между противоположными полями или дном нарезов. У снарядов определяется их наибольшим диаметром;
  • углы вертикального и горизонтального наведения характеризуют диапазоны перемещения ствола орудия в соответствующих плоскостях и определяют уровень огневой маневренности орудия;
  • массогабаритные характеристики орудия определяют возможность и скорость перемещения орудия на марше и на поле боя, возможность его транспортировки. Различают массогабаритные характеристики в боевом и походном положениях.

Разворачивание на позиции чехословацкой 240-мм пушки обр.1916-го года

Эксплуатационные характеристики определяются как совокупность показателей, определяющих эффективность использования орудия. К ним относятся:

  • скорострельность орудия, которая характеризует способность произведения некоего количества выстрелов в единицу времени. Различают максимальную и прицельную скорострельность;
  • время перевода из походного положения в боевое и обратно определяет временной интервал, затрачиваемый на подготовку орудия к стрельбе и транспортировку;
  • максимальная скорость транспортирования используется для определения максимальной маршевой скорости.

Снаряд орудия Dora калибра 807 мм

К обобщенным характеристикам относятся относительные энергетические показатели орудий и включают в себя:

  • дульную энергию, которая характеризует кинетическую энергию снаряда при достижении им начальной скорости;
  • коэффициент могущества орудия, позволяющий сравнивать орудия разных калибров и который определяется отношением дульной энергии к калибру в 3 степени;
  • коэффициент использования металла, определяющий конструктивное совершенство орудия;
  • коэффициент учета длины отката уточняет коэффициент использования металла для длины отката орудия;
  • коэффициент массы снаряда характеризует силу сопротивления воздуха при движении снаряда и определяется как отношение массы снаряда к калибру в 3 степени;
  • относительную массу заряда — отношение массы метательного заряда к массе снаряда, используемое при баллистических расчётах;
  • коэффициент использования заряда, определяющий эффективность заряда;
  • коэффициент использования длины ствола позволяет оценить длину ствола в зависимости от дульной энергии.

Классификация ракет РФ

Боевые ракеты представляют собой непилотируемые летательные устройства, доставляющие к цели поражающие средства полетом на реактивном двигателе.

Различают пять классов ракет:

  • земля-земля;
  • земля-воздух;
  • воздух-земля;
  • воздух-воздух;
  • воздух-поверхность.

В свою очередь, выделяют различные типы ракет земля-земля:

  • по траектории полета — баллистические и крылатые;
  • по предназначению — тактические, оперативно-тактические и стратегические;
  • по дальности.

Земля-земля

Российские ракеты земля-земля запускаются с ракетных комплексов (РК), расположенных в шахтах, на земном рельефе или на кораблях, и предназначены для поражения наводных, наземных и заглубленных в землю целей.

Пуски таких ракет возможны как с неподвижных сооружений, так и с передвижных самоходных либо буксируемых установок.

Ранее на вооружении ракетных войск состояли в основном неуправляемые ракетные снаряды (НУРС). Новые ракеты земля-земля создают и производят управляемыми, снабженными аппаратурой, регулирующей их полет и обеспечивающей достижение цели.

Земля-воздух

Зенитно-ракетный комплекс С-400

Класс земля-воздух объединяет зенитные управляемые ракеты (ЗУР), рассчитанные на уничтожение воздушных целей, в основном боевой и транспортной авиации противника.

По способу запуска и управления различают четыре вида ЗУР:

  • радиокомандные;
  • наводящиеся по радиолучу;
  • самонаводящиеся;
  • комбинированные.

Также ракеты земля-воздух различаются по аэродинамическим особенностям, дальности, высоте и скорости воздушных «мишеней».

Показательный пример российских ЗУР — зенитные комплексы с ракетами средней и большой дальности С-400, фигурирующие в скандале с планируемой поставкой Турции, вызвавшей бурные возражения со стороны США.

Воздух-земля

Воздух-земля — ракетные средства поражения наземных и заглубленных целей, находящиеся на вооружении бомбардировочной и штурмовой авиации. По предназначению и дальности классифицируются аналогично с ракетами земля-земля. По типам целей дополнительно выделяют противотанковые ракеты воздух-земля для ударов по вражеской бронетехнике и противорадиолокационные — для выведения из строя радиолокационных станций (РЛС).

Воздух-воздух

Ракеты воздух-воздух — вооружение российской истребительной авиации, созданное для уничтожения пилотируемых и беспилотных вражеских летательных аппаратов (ЛА).

По дальности бывают:

  • малой — для удара по визуально обнаруженной пилотом цели;
  • средней — для поражения цели на расстоянии до 100 километров;
  • большой — для запуска на расстояние свыше 100 км.

Системы наведения при пусках ракет воздух-воздух используются радиокомандные (в ракетах СССР К-5), активные и полуактивные радиолокационные (АРЛС — в Р-37, Р-77 и ПРЛС — в Р-27), инфракрасные (в ракетах Р-60 и Р-73).

Ракета воздух-воздух Р-27

Воздух-поверхность

Ракетами воздух-поверхность, которые не относятся к виду воздух-земля, является противокорабельное оружие.

Оно характеризуется:

  • сравнительно большой массой;
  • фугасным типом поражающего средства;
  • радиолокационным наведением.

Подробно о противокорабельных современных ракетах России см. ниже.

Ракеты Засядько

Куда интереснее оказались образцы генерала А.Д. Засядько, который даже продал собственное имение, чтобы в частном порядке заниматься разработками. В итоге именно его ракеты оказались наиболее интересными. Они имели калибр от 2 до 4 дюймов, боковой стабилизатор и могли преодолевать расстояние до 2,7 километра. Кроме этого, Александр Дмитриевич разработал пусковую установку на 6 ракет, что существенно увеличивало скорость стрельбы.

Создатель ракетной установки и его творение.

Несмотря на то, что А.Д. Засядько создал отличные ракеты и хорошо провел демонстрацию, это не помогло ему быстро начать продавать свою продукцию. Только в 1827 году он смог начать производство и выпустить первые 3000 ракет. Они и применялись в войне на Кавказе, о которой я говорил в начале. Так же это заставило командованию армии создать отдельный вид войск, так как специфика работы с новым оружием сильно отличалась от работы со стрелковым оружием. Это не только умение пользоваться пусковыми установками, но и совершенно новая тактика ведения боя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector