Подкалиберные снаряды

Немного истории

Первые противотанковые снаряды представляли собой обычные металлические болванки, которые за счет своей кинетической энергии пробивали танковую броню. Благо, последняя не отличалась большой толщиной, и справиться с ней могли даже противотанковые ружья. Однако уже перед началом Второй мировой войны стали появляться танки следующего поколения (КВ, Т-34, «Матильда»), с мощным двигателем и серьезным бронированием.

Основные мировые державы вступили во Вторую мировую войну, располагая противотанковой артиллерией калибра 37 и 47 мм, а закончили ее с орудиями, которые достигали 88 и даже 122 мм.

Повышая калибр орудия и начальную скорость полета снаряда, конструкторам приходилось увеличивать массу пушки, делая ее сложнее, дороже и значительно менее маневренной. Нужно было искать другие пути.

И они вскоре были найдены: появились кумулятивные и подкалиберные боеприпасы. Действие кумулятивных боеприпасов основано на использовании направленного взрыва, что прожигает танковую броню, подкалиберный снаряд также не имеет фугасного действия, он поражает хорошо защищенную цель за счет высокой кинетической энергии.

Конструкция подкалиберного снаряда была запатентована еще в 1913 году немецким фабрикантом Круппом, но их массовое использование началось намного позже. Этот боеприпас не обладает фугасным действием, он гораздо больше напоминает обычную пулю.

Впервые активно использовать подкалиберные снаряды стали немцы во время французской кампании. Еще более широко применять подобные боеприпасы им пришлось после начала боевых действий на Восточном фронте. Только используя подкалиберные снаряды, гитлеровцы могли эффективно противостоять мощным советским танкам.

Однако немцы испытывали серьезный дефицит вольфрама, что мешало им наладить массовое производство подобных снарядов. Поэтому количество подобных выстрелов в боекомплекте было небольшим, а военнослужащим был дан строгий приказ: использовать их только против вражеских танков.

После войны работы в этом направлении продолжались в большинстве ведущих оружейных держав мира. Сегодня подкалиберные боеприпасы считаются одним из главных средств поражения бронированных целей.

В настоящее время существуют даже подкалиберные пули, которые значительно повышают дальность стрельбы гладкоствольного оружия.

Бронебойный и оперенный

Как сообщили «Известиям» источники в оборонно-промышленном комплексе, для российских Вооруженных сил создают новые бронебойные оперенные подкалиберные снаряды (БОПС). Опытно-конструкторская работа началась летом прошлого года по заказу Минобороны. В этом году начинаются тестовые испытания новинки. Ее конструкция и характеристики не разглашаются.

Боеприпас должен резко повысить эффективность скорострельных автоматических пушек против бронетехники. Снаряд можно будет использовать не только на наземных боевых машинах. Такие же пушки устанавливают на ударные вертолеты Ми-28 и Ка-52.

Для армейской авиации повышение пробиваемости особенно актуально. Винтокрылые аппараты могут поражать бронированную технику огнем сверху — там ее защита слабее всего. Поэтому даже 30-мм БОПС могут нести угрозу современным танкам. Для более легкой техники они и вовсе смертоносны

Без труда боеприпас прошьет и стены прочных зданий, что особенно важно в городских боях

Пуля_1

Патроны к 30-мм пушке 2А42 вертолета Ми-28НЭ

Фото: РИА Новости/Виталий Белоусов

Помимо мощности, подкалиберные снаряды ввиду особенностей конструкции имеют высокую скорость и точность попадания. Это облегчает прицеливание и сокращает время полета до мишени. От БОПС уже не получится уклониться, а попадать по противнику можно будет уже первыми выстрелами.

БМП американской армии класса Bradley, немецкие Marder, Puma, а также их современные турецкие и южнокорейские аналоги могут выдерживать, как заявляют их производители, попадание советских 30-мм снарядов в лобовую проекцию, рассказал «Известиям» главный редактор журнала «Арсенал Отечества» Виктор Мураховский.

— В связи с этим появление нового боеприпаса актуально. И направление для модернизации выбрано верно, — отметил эксперт. — 30-мм пушки продолжают устанавливать на отечественные и зарубежные БМП и бронетранспортеры. Это говорит о востребованности и перспективах, в том числе экспортных, нового снаряда.

30-мм автоматические пушки являются сейчас самыми распространенными в российских сухопутных войсках, ВМФ и армейской авиации. Выбор такого калибра был сделан еще в СССР. После тщательных исследований он был признан наиболее эффективным для борьбы с легкобронированной техникой противника, рассказал «Известиям» военный историк Алексей Хлопотов.

Пуля_2

MRAP Cougar на вооружении армии США в Ираке

Фото: commons.wikimedia.org

— Все основные боеприпасы к пушкам данного калибра были разработаны достаточно давно, — отметил эксперт. — Учитывая тенденции, о необходимости новых моделей заговорили еще в конце 1980-х годов, но к их разработке долго не приступали из-за экономических проблем, которые последовали после распада СССР. С тех пор защита легкой военной техники стала намного надежнее. Появились не только новые сплавы и виды брони, сильно изменился даже внешний вид машин. МRAP — это мощные броневики для перевозки личного состава.

Штатные боеприпасы пока справляются со своей задачей — уничтожением БМП, БТР и МRAP. Тем не менее необходимо работать на перспективу. БОПС дадут возможность вписать их в существующие габариты при значительном повышении бронебойности, пояснил Алексей Хлопотов.

В 1990–2000-е годы БОПС для небольших пушек разработали сразу несколько передовых в техническом отношении стран. Сейчас они стоят на вооружении некоторых государств — членов НАТО. Примером может служить распространенный 25-мм снаряд М919, использующийся в боекомплекте американских боевых машин пехоты M2 Bradley.

Известен случай, когда в 2003 году в Ираке такая БМП «дружественным огнем» из своей скорострельной пушки сожгла танк Abrams. Ее небольшие снаряды прошили броню задней части машины и поразили двигатель и боеприпасы.

Преимущества и недостатки кумулятивных боеприпасов

Подобные боеприпасы имеют как сильные стороны, так и недостатки. К их несомненным достоинствам можно отнести следующее:

  • высокая бронебойность;
  • бронепробиваемость не зависит от скорости боеприпаса;
  • мощное заброневое действие.

У калиберных и подкалиберных снарядов бронепробиваемость напрямую связана с их скоростью, чем она выше, тем лучше. Именно поэтому для их применения используются артиллерийские системы. Для кумулятивных боеприпасов скорость не играет роли: кумулятивная струя образуется при любой скорости столкновения с мишенью. Поэтому кумулятивная боевая часть – идеальное средство для гранатометов, безоткатных орудий и противотанковых ракет, бомб и мин. Более того, слишком высокая скорость снаряда не дает образоваться кумулятивной струе.

Попадание кумулятивного снаряда или гранаты в танк часто приводит к взрыву боекомплекта машины и полностью выводит ее из строя. Экипаж при этом практически не имеет шансов на спасение.

Кумулятивные боеприпасы имеют весьма высокую бронебойность. Некоторые современные ПТРК пробивают гомогенную броню с толщиной более 1000 мм.

Недостатки кумулятивных боеприпасов:

  • довольно высокая сложность изготовления;
  • сложность применения для артиллерийских систем;
  • уязвимость перед динамической защитой.

Снаряды нарезных орудий стабилизируются в полёте за счет вращения. Однако центробежная сила, которая возникает при этом, разрушает кумулятивную струю. Придуманы разные «хитрости», для того чтобы обойти эту проблему. Например, в некоторых французских боеприпасах вращается только корпус снаряда, а его кумулятивная часть устанавливается на подшипниках и остается неподвижной. Но практически все решения этой проблемы значительно усложняют боеприпас.

Боеприпасы для гладкоствольных орудий, наоборот, имеют слишком высокую скорость, которая недостаточна для фокусирования кумулятивной струи.

Именно поэтому боеприпасы с кумулятивные боевые части более характерны для низкоскоростных или неподвижных боеприпасов (противотанковые мины).

Против подобных боеприпасов существует довольно простая защита – кумулятивная струя рассеивается с помощью небольшого контрвзрыва, который происходит на поверхности машины. Это так называемая динамическая защита, сегодня этот способ применяется очень широко.

Чтобы пробить динамическую защиту используется тандемная кумулятивная боевая часть, которая состоит из двух зарядов: первый устраняет динамическую защиту, а второй – пробивает основную броню.

Сегодня существуют кумулятивные боеприпасы с двумя и тремя зарядами.

Показатели бронепробиваемости

Сравнительная оценка показателей бронепробиваемости связана со значительными трудностями. На оценку показателей бронепробиваемости влияют достаточно разные методики испытаний БОПС в разных странах, отсутствие в разных странах стандартного типа брони для испытаний, разными условиями размещения брони (компактное или разнесённое), а также постоянными манипуляциями разработчиков всех стран с дистанциями обстрела испытуемой брони, углами установки брони перед испытаниями, различными статистическими методами обработки результатов испытаний. Как материал для испытаний в России и странах НАТО принята гомогенная катаная броня, для получения более точных результатов используются композитные мишени.

Согласно опубликованным данным[источник не указан 1148 дней], увеличение удлинения полётной части до значения 30 позволило повысить относительную толщину пробиваемой катаной гомогенной брони стандарта RHA (отношение толщины брони к калибру пушки, b/dп) до значений: 5,0 в калибре 105 мм, и 6,8 в калибре 120 мм.

Россия

  • БОПС Свинец-1 3БМ59 — не объявлено, но так как снаряд с урановым сердечником по сравнению с вольфрамовым имеет бронепробиваемость примерно на 15-20% большую, то можно сравнив этот снаряд со снарядом Свинец-2 3БМ60 посчитать что он имеет бронепробиваемость около 700 мм/0° и 350 мм/60°; доступны для последних модификаций 2А46.
  • БОПС Свинец-2 3БМ60 — 600 мм/0°, 300 мм/60°; доступны для последних модификаций 2А46.
  • БОПС Манго-М — 280 мм/60°, доступен для всех модификаций 2А46.
  • БОПС Грифель более 1000 мм для 2А83

ряд других
США

  • БОПС М829А1 для пушки калибра 120 мм (США) — 700 мм;
  • БОПС М829А2 — 750 мм;
  • БОПС М829А3 — 800 мм; часто упоминались в течение многих лет «800+»
  • БОПС M829A4 — 930+ мм.

Германия

БОПС DM53 для пушки «Рейнметалл» L/55 калибра 120 мм с увеличенной длиной ствола Lств= 55 клб. — 750 мм (D=2000 м). Длина снаряда 740 мм, диаметр 22,7 мм, длина головной части 84 мм (итого от конца сердечника до начала головной части 656 мм), вес около 5 кг.

Из известных БПС других стран каких либо рекордных боеприпасов за последние десятилетия на данный момент не замечено, что мало связано с фактическим положением ситуации тем более в смысле дополнительных данных (например количество снарядов и орудий и защищённость носителя).

история

Стальные пластины проникшие в испытаниях по морской артиллерии, 1867

В конце 1850 – х года, увидели развитие броненосца военного корабля , который нес кованое железо брони значительной толщины. Эта броня была практически невосприимчива к обеим круглым чугунным пушечным ядрам , то в использовании и к недавно разработанной взрывную оболочке .

Первое решение этой проблемы было осуществлено Крупным сэр У. Palliser , который, с выстрелом Palliser , изобрел способ упрочнения голову заостренного чугунного выстрела. При литье точки снаряда вниз и образуя голова в железной форме, горячий металл внезапно охлажденный и стал сильно трудно

(устойчиво к деформации через мартенситное фазовое превращение ), в то время как остальная часть пресса – формы, формируются из песка, позволил металл медленно остыть и тело выстрела , чтобы бытьжестким (устойчив к осыпанию).

Эти охлажденные железа выстрелы оказались очень эффективными против кованого железа брони , но не исправен против соединения и стальной брони, которая была впервые введена в 1880 году. Новый вылет, поэтому, должно было быть сделано, и кованой стали раундов с точками закаленных водой занимает место выстрела Palliser. Во – первых, эти кованые стальные раунды были изготовлены из обычной углеродистой стали , но , как броню качества улучшилось, снаряды следовали примеру.

В течение 1890 – х годов и впоследствии, закрепила стальная броня стала обычным явлением, первоначально только на более толстую броню кораблей. Для борьбы с этим, снаряд был выполнен из стальной кованой или литой , содержащий как никель и хром . Другое изменение стало введением мягкой крышки металла над точкой оболочки – так называемым «Макары советами» , изобретенного русским адмиралом Степаном Макаровым . Это «шапка» увеличила проникновение смягчая некоторые воздействия шока и предотвращения точки бронебойной от повреждений , прежде чем он ударил броневое лицо или тело оболочки от разрушения. Это может также помочь проникновению под косым углом, сохраняя точку от отклоняя от брони лица.

история

Стальные пластины проникшие в испытаниях по морской артиллерии, 1867

В конце 1850 – х года, увидели развитие броненосца военного корабля , который нес кованое железо брони значительной толщины. Эта броня была практически невосприимчива к обеим круглым чугунным пушечным ядрам , то в использовании и к недавно разработанной взрывную оболочке .

Первое решение этой проблемы было осуществлено Крупным сэр У. Palliser , который, с выстрелом Palliser , изобрел способ упрочнения голову заостренного чугунного выстрела. При литье точки снаряда вниз и образуя голова в железной форме, горячий металл внезапно охлажденный и стал сильно трудно (устойчиво к деформации через мартенситное фазовое превращение ), в то время как остальная часть пресса – формы, формируются из песка, позволил металл медленно остыть и тело выстрела , чтобы быть жестким (устойчив к осыпанию).

Эти охлажденные железа выстрелы оказались очень эффективными против кованого железа брони , но не исправен против соединения и стальной брони, которая была впервые введена в 1880 году. Новый вылет, поэтому, должно было быть сделано, и кованой стали раундов с точками закаленных водой занимает место выстрела Palliser. Во – первых, эти кованые стальные раунды были изготовлены из обычной углеродистой стали , но , как броню качества улучшилось, снаряды следовали примеру.

В течение 1890 – х годов и впоследствии, закрепила стальная броня стала обычным явлением, первоначально только на более толстую броню кораблей. Для борьбы с этим, снаряд был выполнен из стальной кованой или литой , содержащий как никель и хром . Другое изменение стало введением мягкой крышки металла над точкой оболочки – так называемым «Макары советами» , изобретенного русским адмиралом Степаном Макаровым . Это «шапка» увеличила проникновение смягчая некоторые воздействия шока и предотвращения точки бронебойной от повреждений , прежде чем он ударил броневое лицо или тело оболочки от разрушения. Это может также помочь проникновению под косым углом, сохраняя точку от отклоняя от брони лица.

Кумулятивный снаряд: принцип действия

В боевой части заряда делается воронкообразное углубление, которое облицовывается слоем металла толщиной в один или несколько миллиметров. Данная воронка повернута широким краем к мишени.

После детонации, которая происходит у острого края воронки, взрывная волна распространяется к боковым стенкам конуса и схлопывает их к оси боеприпаса. При взрыве создается огромное давление, которое превращает металл облицовки в квазижидость и под огромным давлением перемещает ее вперед вдоль оси снаряда. Таким образом образуется струя металла, которая движется вперед с гиперзвуковой скоростью (10 км/с).

Следует отметить, что при этом металл облицовки не плавится в традиционном понимании этого слова, а деформируется (превращается в жидкость) под огромным давлением.

Когда струя металла входит в броню, прочность последней не имеет никакого значения. Важна ее плотность и толщина. Пробивная способность кумулятивной струи зависит от ее длины, плотности материала облицовки и материала брони. Максимальное проникающее действие возникает при взрыве боеприпаса на определенном расстоянии от брони (оно называется фокусным).

Взаимодействие брони и кумулятивной струи происходит по законам гидродинамики, то есть давление столь велико, что самая крепкая танковая броня при попадании на нее струи ведет себя как жидкость. Обычно кумулятивный боеприпас может пробить броню, толщина которой составляет от пяти до восьми его калибров. При облицовке из обедненного урана бронебойное действие увеличивается до десяти калибров.

Кумулятивная струя

Фоторазвертка движения.

Условия формирования кумулятивной струи определяются микроструктурой металла облицовки и способностью его структурных составляющих к пластической деформации.

Фоторазвертка движения.

Путем улавливания кумулятивной струи в некоторых неплотных средах и последующего металлографического анализа установлено, что в процессе формирования струи не происходит плавления металла. Однако температура струи при этом может достигать 900 – 1000 С.

Процесс проникания кумулятивной струи в любую среду разделяется на начальную ударно-волновую стадию и стадию установившегося проникания.

Теория образования кумулятивных струй и их действия, предложенная М. А. Лаврентьевым и Г. И. Покровским ( около 1944 г.), просто и наглядно объясняет главные черты этого явления. Струя образуется при косом столкновении пластин, показанном на рис. 1, а. Авторы теории выбрали удачное и простое приближение, сделавшее все расчеты элементарными: материал пластин считается несжимаемой жидкостью. Во многих случаях такое приближение оказывается хорошим.

Механизм образования кумулятивной струи следующий. При взрыве вещества в виде цилиндрического заряда происходит почти мгновенное превращение его в газообразные продукты, которые разлетаются во все стороны в направлениях, перпендикулярных поверхности заряда. Если углубление в заряде облицовано тонким слоем металла, то при детонации заряда вдоль его оси образуется кумулятивная струя, состоящая не только из газообразных продуктов, но и из размягченного металла, который выделяется из металлической облицовки.

В создании кумулятивной струи участвует так называемая активная часть кумулятивного заряда, т.е. часть ВВ, непосредственно прилегающая к кумулятивной выемке и характеризующаяся распространением продуктов детонации в направлении кумулятивной струи. Продукты детонации остальной – пассивной части кумулятивного заряда разлетаются в стороны, полезной работы не производят и – как правило, оказывают вредное воздействие на окружающие элементы конструкции и среду. Доля активной части заряда может быть увеличена путем помещения заряда в массивную оболочку из плотного и прочного материала.

В этом случае кумулятивная струя не образуется. Следовательно, смачиваемость стенок пробирки жидкостью является существенным условием опыта.

Поскольку в действительности кумулятивная струя в движении растягивается и затем фрагментируется, расчет длины пробиваемого ею канала существенно усложняется.

Рассмотрим механизм образования кумулятивной струи и проникновении ее в преграду. При взрыве цилиндрического заряда взрывчатого вещества происходит почти мгновенное превращение его в газообразные продукты, разлетающиеся во все стороны по направлениям, перпендикулярным к поверхности заряда. Сущность эффекта кумуляции заключается в том, что при наличии выемки в заряде газообразные продукты детонации части заряда, называемой активной частью, двигаясь к оси заряда, концентрируются в мощный поток, называемый кумулятивной струей.

С – длина кумулятивной струи, для большинства зарядов численно равная длине образующей кумулятивной выемки.

Лаврентьев рассчитал параметры кумулятивной струи для зарядов с конической формой выемок и близкой к ней с учетом этих факторов.

Теория бронепробивного действия кумулятивной струи впервые была разработана Лаврентьевым. Он исходил из предположения, что при соударении струи с броней развиваются высокие давления, при которых можно пренебречь прочностным сопротивлением металла и рассматривать броню как идеальную несжимаемую жидкость. В соответствии с этим Лаврентьев подробно рассмотрел следующую задачу.

Рассмотрим сначала движение кумулятивной струи в воздухе. Очевидно, что на сравнительно небольших расстояниях от заряда ( до нескольких метров), которые и представляют практический интерес, сопротивлением воздуха можно пренебречь и рассматривать движение струи в вакууме.

История

Стальные пластины, пробитые во время испытаний морской артиллерией, 1867 г.

В конце 1850 — х года, увидели развитие броненосца военного корабля , который нес кованое железо брони значительной толщины. Эта броня была практически невосприимчивой как к использовавшимся тогда круглым чугунным пушечным ядрам, так и к недавно разработанным взрывным снарядам .

Первое решение этой проблемы было предпринято майором сэром У. Паллисером , который с помощью дроби Паллизера изобрел метод упрочнения головки остроконечной чугунной дроби. При отливании острия снаряда вниз и формовании головки в чугунной форме горячий металл внезапно охладился и стал очень твердым (устойчивым к деформации в результате фазового превращения мартенсита ), в то время как остальная часть формы, сформированная из песка, позволила металл должен медленно остывать, а корпус выстрела сделать прочным (устойчивым к разрушению).

Эти выстрелы из закаленного железа оказались очень эффективными против брони из кованого железа, но не годились против составной и стальной брони, которая была впервые представлена ​​в 1880-х годах. Поэтому пришлось сделать новый подход, и вместо выстрела Паллизера стали кованые стальные патроны с закаленными водой остриями . Сначала эти патроны из кованой стали изготавливались из обычной углеродистой стали , но по мере улучшения качества брони снаряды последовали их примеру.

В течение 1890-х годов и впоследствии цементированная стальная броня стала обычным явлением, первоначально только на более толстой броне военных кораблей. Для борьбы с этим снаряд изготавливали из стали — кованной или литой, — содержащей как никель, так и хром . Другим изменением стало введение мягкого металлического колпачка на острие гильзы — так называемых «наконечников Макарова», изобретенных российским адмиралом Степаном Макаровым . Эта «шапка» увеличивала пробиваемость, смягчая часть ударного воздействия и предотвращая повреждение бронебойной точки до того, как она ударит по лицевой стороне брони или корпусу снаряда от разрушения. Это также могло способствовать проникновению под косым углом, удерживая острие от отклонения от лицевой стороны брони.

Разновидности

Существуют различные виды конструкции подкалиберных боеприпасов:

  • С неотделяющимся поддоном (англ. Armour-piercing, composite rigid, сокр. APCR) — представляют собой тело снаряда из лёгкого металла с твёрдосплавным сердечником. Весь полёт до цели такой снаряд проходит как единое целое, а в процессе пробивания бронезащиты цели участвует только сердечник, отделяющийся от поддона при столкновении с броней. Сравнительно большое аэродинамическое сопротивление (как у обычного бронебойного снаряда) при небольшой массе приводит к существенному падению бронепробиваемости и точности с расстоянием.
  • С неотделяющимся поддоном, для использования с коническим стволом (англ. Armour-piercing, composite non-rigid, сокр. APCNR) — конструкция поддона обеспечивает его смятие при прохождении по коническому стволу специальной конструкции, за счёт чего уменьшается площадь поперечного сечения снаряда и снижается аэродинамическое сопротивление.
  • С отделяющимся поддоном (англ. Armour-piercing, discarding-sabot, сокр. APDS) — конструкция снаряда после выхода из ствола обеспечивает срыв поддона с сердечника набегающим потоком воздуха или, в случае нарезного орудия, центробежной силой. За счёт небольшого диаметра сердечника обеспечивается низкое сопротивление воздуха при полёте.
  • Бронебойный оперённый подкалиберный снаряд (англ. Armour-piercing, fin-stabilized, discarding-sabot, сокр. APFSDS) — подкалиберный снаряд с отделяющимся поддоном, где для обеспечения устойчивости полёта и повышения кучности сердечник снабжают небольшим оперением.

Показатели бронепробиваемости

Сравнительная оценка показателей бронепробиваемости связана со значительными трудностями. На оценку показателей бронепробиваемости влияют достаточно разные методики испытаний БОПС в разных странах, отсутствие в разных странах стандартного типа брони для испытаний, разными условиями размещения брони (компактное или разнесённое), а также постоянными манипуляциями разработчиков всех стран с дистанциями обстрела испытуемой брони, углами установки брони перед испытаниями, различными статистическими методами обработки результатов испытаний. Как материал для испытаний в России и странах НАТО принята гомогенная катаная броня, для получения более точных результатов используются композитные мишени.

Согласно опубликованным данным[источник не указан 660 дней

], увеличение удлинения полётной части до значения 30 позволило повысить относительную толщину пробиваемой катаной гомогенной брони стандарта RHA (отношение толщины брони к калибру пушки, b/dп) до значений: 5,0 в калибре 105 мм, и 6,8 в калибре 120 мм.

Россия

  • БОПС Свинец-1 3БМ59 — не объявлено, но так как снаряд с урановым сердечником по сравнению с вольфрамовым имеет бронепробиваемость примерно на 15-20% большую, то можно сравнив этот снаряд со снарядом Свинец-2 3БМ60 посчитать что он имеет бронепробиваемость около 700 мм/0° и 350 мм/60°; доступны для последних модификаций 2А46.
  • БОПС Свинец-2 3БМ60 — 600 мм/0°, 300 мм/60°; доступны для последних модификаций 2А46.
  • БОПС Манго-М — 280 мм/60°, доступен для всех модификаций 2А46.
  • БОПС Вакуум-1 — 900/0°; для орудия 2А82.
  • БОПС Грифель более 1000 мм

ряд других США

  • БОПС М829А1 для пушки калибра 120 мм (США) — 700 мм;
  • БОПС М829А2 — 750 мм;
  • БОПС М829А3 — 800 мм; часто упоминались в течение многих лет «800+»
  • БОПС M829A4 ничего не объявлено, внешне вполне соответствует предшественнику. Ссылаясь на слова разработчика называют 770.

Германия

БОПС DM53 для пушки «Рейнметалл» L/55 калибра 120 мм с увеличенной длиной ствола Lств= 55 клб. — 750 мм (D=2000 м). Длина снаряда 740 мм, диаметр 22,7 мм, длина головной части 84 мм (итого от конца сердечника до начала головной части 656 мм), вес около 5 кг.

Из известных БПС других стран каких либо рекордных боеприпасов за последние десятилетия на данный момент не замечено, что мало связано с фактическим положением ситуации тем более в смысле дополнительных данных (например количество снарядов и орудий и защищённость носителя).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector