Доклад про невесомость (сообщение по физике)

2 March. 08:00. Star City

Подъем в шесть утра. Проходная на въезде в Звездный, как я уже рассказывал, похожа на смесь кинотеатра и парикмахерской.

Six a.m. wake-up call. As I already told you, the control post at the Star City entrance looks like a cross between a cinema and a hairdresser’s.

Погода  жуткая. Снегопад начался ночью, мы находимся в центре циклона. Полет, скорее всего, отменят. Но нас снова везут в здание гидролаборатории. Здесь мы ждем у моря погоды. Пока ничего не происходит, я изучаю коридоры:

The weather is bloody awful. The snow began falling at night, we are in the middle of a cyclone. It’s highly likely that they’ll cancel the flight. However, they drive us back to the hydrolab. Here we play the waiting game. While nothing is happening I study the corridors:

DON’T YOU GET IT?

DO NOT SWITCH OFF!!!
EXPENSIVE EQUIPMENT IN OPERATION

Нам сообщают, что полет, ясное дело, сегодня невозможен. Предлагают попробовать завтра. В качестве утешения зовут на третий этаж, где стоит поднятый из бассейна кусок МКС, на котором вчера тренировались ныряльщики.

We are informed that it isn’t possible to fly today. They suggest we try again tomorrow. The consolation prize is an invitation up to the third floor where we can view the piece of the ISS they’ve lifted out of the pool, the one the divers trained on yesterday.

Утешение принимается.

Consolation prize offer accepted.

На стене холла гидролаборатории  галактическое эпическое произведение «Смотри, Валерич, трюмо!»

On the wall in the hall of the hydrolab there’s an epic work of galactic proportions called “Valerievich, would you look at that, a dressing table!”

Развлечение

В последнее время в сфере индустрии развлечений появились специальные полигоны, где все желающие могут испытать невесомость.

Пройдя медицинскую комиссию и заплатив определённую сумму денег, можно попасть на борт самолёта, который летит по волнообразной траектории, и во время пике люди на протяжении полминуты могут испытать необычное чувство невесомости.

Пилот самолёта через селекторную связь сообщает о начале действия невесомости. Это необходимо в целях безопасности. Дело в том, что после свободного падения самолёт стремительно набирает высоту. При этом люди, находящиеся на борту, испытывают диаметрально противоположный эффект — перегрузку.

Порой эта величина достигает трёхкратного значения ускорения свободного падения. Иными словами, вес тела в невесомости будет в три раза больше естественного. При падении с высоты нескольких метров с такой массой тела можно очень легко получить травму.

Для этих целей на борту самолёта в отделении для невесомости сидят специально обученные инструкторы. В их задачу входит вовремя опускать на пол самолёта тех людей, которые не успели уложиться в данный временной интервал.

Серия взлётов и падений происходит с периодичностью до двадцати раз за один полет самолёта.

В России, например, для желающих ощутить невесомость есть специальная центрифуга, которая находится в центре подготовки космонавтов и пилотов. Опять же, после медкомиссии и денежного взноса в размере порядка 55 тыс. рублей человек может ощутить на себе действие невесомости.

Как найти гравитационную постоянную – история открытия

Коэффициент G – универсальная константа, измерение которой осуществляется экспериментальным путём. Доподлинно неизвестно, кто открыл значение гравитационной постоянной, первое употребление в «Трактате по механике» Пуассона датируется 1811 годом.

Работы Ньютона

При публикации закона тяготения в трактате Ньютона отсутствовало явное обозначение константы, характеризующее гравитацию и её действие. Коэффициент не появлялся в работах по физике вплоть до конца восемнадцатого века, его точное значение не было вычислено.


Исаак Ньютон

Вместо известной сегодня постоянной присутствовал гравитационный параметр:

M – масса объекта, причём, масса планеты или звезды, так как гравитационный параметр нашёл широкое распространение в астрофизике.

Сегодня для объектов Солнечной системы значение параметра рассчитано точнее, чем гравитационная постоянная G и масса по отдельности, так как она не требует серьёзных экспериментов, вычисляется на основании астрономических наблюдений.

Например:

  • для Земли ;
  • Луны ;
  • Солнца .

Подробнее о использовании закона всемирного тяготения в астрономии вы можете прочитать в нашей статье.

Как была экспериментально определена гравитационная постоянная – эксперимент Кавендиша

Естествоиспытатель Джон Митчел придумал эксперимент для определения массы Земли при помощи крутильных весов, однако не реализовал его. После его смерти идея опыта и аппаратура перешли к английскому физику и химику Генри Кавендишу, который, усовершенствовав прибор, провёл ряд экспериментов и осуществил задумку своего предшественника.


крутильные весы Кавендиша

Главенствующая роль в опытах отводилась установке. На метровой нити из меди подвешивалось коромысло длиной 1,8 метра, на его концах устанавливалась пара свинцовых шариков диаметром 5 сантиметров, массой 775 грамм. Чуть выше крепилась поворотная ферма, причём тщательно соблюдалось требование совпадения оси вращения фермы с медной нитью. На концах поворотной штанги находилось по одному большому свинцовому шару диаметром 20 сантиметров, массой 49,5 килограмм. Чтобы избежать влияния конвекционных воздушных потоков, вся установка накрывалась плотным деревянным кожухом. Вследствие взаимодействия лёгкие шарики притягивались к тяжёлым, закручивая нить и отклоняя коромысло. Угол отклонения фиксировался двумя телескопами, а сила упругости нити приравнивалась гравитационному взаимодействию шаров.

Величина определённой силы притяжения составляла 0,17 микроньютона. Если сравнивать это значение с весом маленького шара, то оно меньше последнего примерно в 45 миллионов раз.

В результате своего эксперимента Генри Кавендиш рассчитал среднюю плотность Земли, причём его эксперимент был точным – погрешность измеренного значения в сравнении с современным значением составляет всего 0,7%. Именно Кавендишу приписывают открытие значения гравитационной постоянной, однако он никогда не задавался подобной целью при проведении своих опытов. Очевидно, величина константы определена на основании результатов его эксперимента, но кто сделал это первым, неизвестно.


Генри Кавендиш

Измерение гравитационной постоянной

Значение константы, полученное по измеренной Кавендишем плотности, по разным источникам разнится. Британская энциклопедия называет число, равное

Коэффициент пропорциональности определяли после Генри Кавендиша, причём зачастую его установку модернизировали новыми материалами. Например, в 1872 году Корню и Байль для измерения гравитационной постоянной использовали платиновые маленькие шарики и стеклянные, наполненные ртутью, большие. Результаты опыта показали значение


-3

Профилактика последствий

Альтернативой длительной и трудной реабилитации после космической экспедиции в отсутствии силы тяжести является постоянная и настойчивая профилактика неблагоприятных изменений в организме.

На орбите экипаж постоянно поддерживает физическую форму

В космическом полёте, когда отсутствует сила тяжести и вес невесомость обнуляет, космонавты постоянно занимаются физическими упражнениями, причём часто под нагрузкой. Например, пользуются бегущей дорожкой, будучи притянутыми к ней упругими резиновыми элементами, укрепленными на поясе.

Работа с эспандером хорошо укрепляет мышцы рук и плечевого пояса. Для укрепления мышц спины также используют упругие элементы, работающие на растяжение. Все эти упражнения способствуют укреплению сердечно-сосудистой системы, что тоже является очень хорошей профилактикой последствий длительного воздействия нулевой силы тяжести. Специально подобранный рацион обеспечивает необходимую перистальтику желудочно-кишечного тракта.

В длительном полете невесомость значение приобретает очень важное, но космонавты летают в отсутствие силы тяжести все дольше и дольше. В космосе космическая экспедиция может провести много месяцев

Рекордсмен по этой части – россиянин Валерий Поляков. Его полет проходил в 1994 и 1995 году. Поляков провел на станции «Мир» 438 суток. Это более 62 недель, более 14 месяцев. Нет предела совершенству!

Какова микрогравитация на вкус?

Когда вы впервые окажетесь в состоянии невесомости, вы почувствуете следующее:

— тошнота;

— дезориентация;

— головная боль;

— потеря аппетита;

— запор;

— еще кое-что…

Чем дольше вы будете оставаться в условиях микрогравитации, тем слабее будут ваши мышцы и кости. Эти ощущения будут вызваны различными изменениями в системах вашего организма. Давайте подробно рассмотрим, как тело реагирует на невесомость.

Космическая болезнь

Тошнота и дезориентация, которая на вкус как сосущее чувство в желудке, когда автомобиль «летит» вниз по трассе или вас подхватывает на карусели. Только на борту корабля это чувство будет длиться несколько дней. Это чувство космической болезни, слабость моторики, когда ваш мозг получает противоречивую информацию от вестибулярных органов, расположенных в вашем внутреннем ухе. Ваши глаза видят, куда двигаться вверх и вниз в корабле, но ваша вестибулярная система полагается на силу тяжести, определяя направления, что не работает в невесомости. Поэтому ваши глаза могут говорить мозгу, что вы движетесь сверху вниз, но мозг этого не поймет. Это вызывает дезориентацию и тошноту, что может привести к потере аппетита и рвоте. К счастью, спустя несколько дней мозг адаптируется и начнет реагировать исключительно на визуальные сигналы. Таблетки тоже помогут.

Одутловатое лицо и куриные лапки

В условиях микрогравитации ваше лицо будет одутловатым, а пазухи — перегруженными, что вызовет головную боль и нарушение моторики. На Земле это можно почувствовать, если стоять вверх ногами — кровь приливает к голове.

На Земле гравитация притягивает вашу кровь, в результате чего значительные ее объемы скапливаются в венах ног. Как только вы окажетесь в условиях микрогравитации, кровь сдвинется из ваших ног в грудь и голову. Лицо опухнет, а ноги, наоборот, уменьшатся в размерах.

Когда кровь переходит в грудь, сердце увеличивается в размерах и качает больше крови с каждым ударом. Почки отвечают на этот увеличенный кровоток производством большего количества мочи, будто вы выпили большой стакан воды. Кроме того, увеличение кровотока снижает уровень секреции гипофизом антидиуретического гормона (АДГ), что уменьшает жажду. Вы не будете хотеть пить столько же воды, сколько на Земле. В совокупности эти два фактора помогут вашей груди и голове избавиться от лишней жидкости за несколько дней, а поток жидкости вашего тела нормализуется (для космических условий). По возвращении на Землю, вы будете больше пить и чувствовать усталость, но это пройдет.

Космическая анемия

По мере того, как ваши почки выводят лишнюю жидкость, они также уменьшают секрецию эритропоэтина — гормона, стимулирующего производство красных кровяных тел клетками костного мозга. Снижение производства красных кровяных клеток сопровождается уменьшением объема плазмы, поэтому гематокрит (процент объема крови, занимаемого красными кровяными телами) такой же, как на Земле. По возвращении на Землю, ваш уровень эритропоэтина будет расти, так же как и количество красных кровяных тел.

Слабые мышцы

Когда вы находитесь в условиях микрогравитации, ваше тело принимает позу «зародыша»: вы немного сгибаетесь, ваши руки и ноги также принимают полусогнутое состояние. В таком положении вы не используете многие мышцы, особенно те, которые помогают вам поддерживать осанку (антигравитационные мышцы). По мере пребывания на борту МКС, ваши мышцы меняются. Их масса уменьшается, что приводит к «куриным лапкам». Ваше тело больше не нуждается в мышцах, которые медленно сокращаются, вроде тех, что используются в положении стоя. Нужны быстро сокращающиеся волокна, чтобы быстрее передвигаться по станции. Чем больше вы остаетесь на МКС, тем меньше у вас будет мышечной массы. Потеря мышечной массы ослабляет вас, и это, между прочим, является серьезной проблемой для длительных полетов, особенно после возвращения на Землю.

Остеопсатироз

На Земле ваши кости поддерживают вес вашего тела. Размер и масса костей тщательно сбалансированы. В условиях микрогравитации вашим костям больше не нужно поддерживать ваше тело, поэтому все ваши кости, особенно несущие, в районе бедер, ляжек и нижней части спины, используются меньше, чем на Земле. Размер и масса костей в невесомости уменьшаются примерно на 1% в месяц. В результате по возвращении на Землю они просто могут разрушиться. Неизвестно, каков процент восстанавливаемых костей после возвращения на Землю, но он точно не равен 100. Именно эта проблема вносит ограничения на время пребывания в космосе.

В дополнение к слабым костям, концентрация кальция в крови приводит к болезни почек, которым нужно этот избыточный кальций выводить. Могут образоваться камни в почках.

Контрмеры

Что можно сделать, чтобы облегчить пребывание в условиях микрогравитации? Что касается неодушевленных вещей, каждый объект на станции или корабле должен храниться в шкафу, быть привязан или крепиться к стене липучкой.

К примеру, если вы едите в условиях невесомости, вы должны прочно стоять на ногах в аппарате, а ваш поднос с едой должен быть прикреплен к вам ремешком. Как вы знаете, еда обычно хранится в тюбиках и представляет собой полужидкую массу, какой-нибудь рис или паштет, который можно легко выдавить из тюбика, и он не уплывет. Портативное оборудование, вроде ноутбука, также привязывается  к вам или к стене корабля.

Давайте вспомним, что на борту МКС наше тело подвергается в основном трем изменениям: потеря жидкости, потеря мышечной ткани и потеря костной массы. Что же нужно делать, чтобы минимизировать эти потери?

Потеря жидкости

Одна из контрмер при потере жидкости — это устройство, которое называется «отрицательное давление нижнего тела» (ОДНТ), которое работает как пылесос пониже вашей талии, удерживая жидкость в ногах. Это устройство можно прикрепить к тренажеру, например, к беговой дорожке. Раз в день можно упражняться с ОДНТ по 30 минут, поддерживая сердечно-сосудистую систему в близком к земному состоянии.

Кроме того, до возвращения на Землю, можно выпить большое количество воды или раствор электролита, чтобы помочь восстановить потерянную жидкость в теле. Это предупредит обморок после выхода из космического корабля.

Уменьшение мышц и костей

NASA и Роскосмос выяснили, что лучший способ свести к минимуму потери мышечной и костной массы в космосе — это постоянные тренировки. Они тренируют мышцы, предотвращают их деградацию и создают нагрузку на кости, имитируя вес. Каждый день по два часа на разных тренажерах в особых ремешках — и вы сможете минимизировать потери мышечной и костной масс.

Тем не менее, ученые признают, что нужно больше исследований для выявления качественных контрмер. Причем как на борту МКС, так и на Земле, как с помощью людей, так и животных. Результаты исследований могут проложить дорогу к длительным поездкам, например, на Марс.

Зачем армии космос

Армия и космос – близнецы-братья. Напомню, что Юрий Гагарин улетел в первый космический полёт старшим лейтенантом, а вернулся майором Советской армии. Армия оценила подвиг.

Первый космонавт Юрий Гагарин – майор Советской Армии

Все космонавты первого призыва были военными летчиками. Только во втором наборе появилось несколько инженеров. Да и те работали в ракетном КБ. Сама космическая отрасль была задумана и появилась в стране как средство доставки ядерных боезарядов с континента на континент.

Беспилотная космонавтика

Три классических военных аспекта космоса: боевые баллистические ракеты, спутники связи и системы геолокации. Ни одна из частей этой триады не является пилотируемой. Это означает, что воздействие невесомости на человека отдыхает. Нет экипажа космического аппарата – нет влияния отсутствия силы тяжести на человека. Большую часть своей траектории баллистическая ракета летит в невесомости. Это необходимо учитывать, из этого исходить при расчетах, но человек здесь ни при чём, ощущение невесомости он не испытывает. Так что пока и поскольку военный космос не требует пилотируемых полётов, то терпеть невесомость и перегрузки офицерам не нужно.

Пилотируемая космонавтика

Но перед экипажем пилотируемого космического аппарата могут стоять военные задачи. Задачи дистанционного зондирования поверхности Земли всегда включают решение задач космической разведки, они нередко требуют активного участия членов экипажа.

Спутники-инспекторы часто требуют управления со стороны экипажа обитаемого космического аппарата. Особенно при боевой активности такого спутника-инспектора. В этом случае может осуществляться непосредственный визуальный контакт экипажа со спутником-инспектором, особенно при выполнении оперативных манёвров.

При выходе в открытый космос человек летит со скоростью 8 км/с

На орбитальной станции экипажи сменяют друг друга, как правило, через несколько месяцев: космонавты испытывают состояние невесомости по полгода и дольше. Вес тела невесомость компенсирует, при этом офицерам приходится ежедневно тренироваться под нагрузкой упругих элементов, моделируя работу организма в условиях гравитации, минимизируя эффект невесомости. Факты о невесомости таковы: после полета члены экипажа проходят серьезный и продолжительный процесс реабилитации, с трудом возвращают себя в привычную физическую форму. При условии возникновения изменений, их глубина зависит от того, какое время в невесомости провел человек. Длительность реабилитации сравнима со временем полета.

Волшебная сила невесомости

Пудовая гиря в невесомости (скажем, на международной космической станции – МКС) имеет массу ровно 16 килограмм. Ни одним граммом меньше чем 16 000 граммов.

Даже в невесомости масса пудовой гири – ровно 16 кг

Да-да! Именно так. Масса в невесомости – точно такая, как на Земле. Другое дело, что вес пудовой гири на МКС равен нулю. Но это вес, а масса – как была на Земле один пуд, так и на орбите не стала другой – ровно один пуд.

Дело в том, что масса тела, о которой идет речь, бывает двух видов:

  • инертная;
  • гравитационная.

Инертная масса отвечает за ускорения и замедления тела. А гравитационная определяет силу гравитационного притяжения между телами. Этот закон сформулировал еще Исаак Ньютон. Говоря своими словами – если с размаху ударить пудовой гирей по голове космонавта, то вмятина будет одинаковой, находится ли космонавт на земле или в космическом корабле. Здесь имеет значение инерционная масса. А вот если перестать держать рукой пудовую гирю на МКС, то она не падает вниз. Но вверх она тоже не взлетает. Если что-то удерживает гирю от падения, то она висит в воздухе. Здесь играет свою роль гравитационная масса. Образно говоря, гиря висит в атмосфере отсека МКС, потому, что «падает» вместе со всей космической станцией. Они обе (МКС и гиря) летят по орбитальной траектории вокруг Земли. Причем летят по одинаковой траектории. И, поэтому не двигаются друг относительно друга. Это и есть явление невесомости. Условие невесомости – свободное падение. Жидкость в невесомости не растекается по полу, как было бы при наличии силы тяжести, а собирается в более или менее правильные шары, за счет силы поверхностного натяжения этой жидкости.

Что сильнее- электромагнитная или гравитационная сила

Многие думают, что именно электромагнетизм сильнее гравитации. В целом, если не придираться к некоторым тонкостям, это правда, но, как всегда, есть некоторые ”но”.

Электромагнетизм — это сила, которая возникает на самом микроскопическом уровене и в некотором роде является основной всей механики, создавая основные силы. Например, в атоме чего-либо (допустим водорода) есть протоны, которые летают вокруг электронов. В итоге у нас есть электрический заряд и масса. Первый определяет силу электромагнитного взаимодействия, а второй уже относится к гравитации.

Эти силы рассматривают по отдельности из-за того, что они имеют свое влияние на разном уровне. Ни для кого не секрет, что электромагнитные частицы одного заряда отталкиваются, а противоположного — притягиваются. Если мы имеем дело с системой, в которой есть частицы с положительными и отрицательными зарядами, то можно считать, что она нейтральна. Примером может служить атом, который находится, как бы в равновесии.

Если мы возьмем огромное количество атомов и начнем рассматривать, например, планету, то расстановка сил изменится. В этом случае все тело в целом будет иметь плюс-минус нейтральный заряд и на первый план выйдет именно сила гравитации. То есть электромагнетизм действительно силен, но только когда речь идет о связи элементарных частиц. На этом уровне он действительно сильнее гравитации. Если говорить о больших объектах, то гравитация важнее.

На микроуровне все уравновешено собственными силами.

Вес

Вес – это сила. Этой силой тело давит на опору, когда опирается на нее, или растягивает подвес, когда на нем висит.

Является векторной величиной и обозначается символом \(\vec{P} \).

\(\vec{P} \left(H\right) \) – вес тела, как любая сила в СИ измеряется в Ньютонах.

Когда тело опирается о горизонтальную поверхность, его вес равен по модулю силе реакции опоры по . Поэтому, в задачах для нахождения веса удобно вычислять силу \(\large \vec{N}\). Как только мы найдем реакцию опоры \(\large \vec{N}\), мы найдем вес тела, давящего на эту опору.

Примечание: Векторы равны по модулю, когда обладают одинаковыми длинами. Так как длина вектора обозначается числом, то физики о равных по модулю векторах сил могут сказать: силы численно равны.

Чем вес отличается от силы тяжести

Вес — это сила, принадлежащая телу. А сила тяжести — это сила, действующая на тело со стороны планеты, или любого другого (крупного) тела.

Методы имитации для изучения

Большинство общепринятых методов имитации невесомости воспроизводит давление крови, функциональные и другие сдвиги, которые возникают в этом состоянии.

Для имитации вестибулярных нарушений, развивающихся в условиях невесомости, используется калориметрическая проба (раздражение внутреннего уха теплой водой) и кресло для исследования вестибулярного аппарата с вращением испытуемого.

При вращении человека на кресле  возникает конвекция жидкости в полукружных каналах уха, что обычно вызывает нистагм (непроизвольное колебание глаз) и нередко вестибулярные нарушения.

При проведении теста астронавта в кресле на борту космического корабля «Шаттл» (США) также проявился нистагм. Этот результат не соответствовал научным ожиданиям, так как давно предложенная для объяснения вестибулярных нарушений теория была основана на рецепторах внутреннего уха, что возможно только в условиях гравитации. В отсутствие последнего метод не должен, казалось бы, работать. Авторы эксперимента полагают, что теория для объяснения вестибулярных нарушений должна быть пересмотрена.

Это является еще одним убедительным примером того, как знания, добытые в космических просторах, позволяют по-новому подходить к тайнам, лежащим в «нас самих». Так или иначе, изложенное выше наблюдение заслуживает внимания и подтверждения. Можно лишь предположить, что при вращении кресла может возникать так называемая искусственная гравитация, и тогда все остается на «прежних местах».

Вопрос имитации физиологических эффектов, свойственных состоянию невесомости на Земле, является базисным для космической медицины.

Целесообразность изучения эффектов состояния невесомости в земных условиях продиктована трудностями комплексных исследований в космическом полете, необходимостью тщательного подбора космонавтов и изучения тех изменений, которые могут наблюдаться во время космических полетов.

Вариант №2

Невесомость представляет собой состояние, при котором вес тела равняется нулю. Именно вес, так как масса предмета, при любом условии, остаётся неизменной. Обусловлено это отдалением от зоны действия земной гравитации и отсутствием таких факторов, как сил тяжести, сила сопротивления и реакция плоскости. Все тела начинают двигаться с одинаковым ускорением, поэтому человек, находящийся в космосе не чувствует тяжесть собственного тела, становиться невесомым, предметы, выпущенные в невесомость, не могут столкнуться и упасть, так так пол, стены и все окружение движется с той же скоростью, что и они.

Для нас невесомость — не природная стихия, соответственно неблагоприятно сказываться на организме в целом. Снижается  мышечный тонус, не используясь по своему назначению мышцы выключаться, что может привести к их атрофированию Слабеют кости из-за нарушения фосфорного обмена. Нарушается работа кровеносной системы — сердцу, как главному насосу, нет необходимости с прежней силой продавливать кровь по сосудам, доставляя ее к мозгу. Все это называется синдромом космической адаптации. Только при правильной организации деятельности в невесомости, а именно заблаговременная подготовка космонавтов к невесомости в космических лабораториях, специальные физические нагрузки и медикаменты, возможно избежать пагубного ее воздействия.

Невесомость — это не только космос и внеземное пространство, любой, свободно падающий предмет, некоторой время находится в состоянии невесомости. Человеку же достаточно подпрыгнуть, и отрезок времени между отрывом и приземлением обратно на землю и будет невесомость. Также чувство невесомости, как побочное явление ощущается при полетах на гражданских самолётах. Но, так как, это состояние опасно для неподготовленного человека, пилоты, во избежание осуществляют посадку постепенно сбрасывая высоту, как бы опускаясь по ступеням. Подобное чувство известно и гонщикам на спортивных соревнованиях.

На межорбитальных станциях уделяют огромное внимание изучению и организации быта космонавтов в состоянии невесомости. Например, чтобы избежать застоя углекислого газа, накапливаемого при дыхании, устанавливают большое количество вентиляторов, которые перемешивают его с кислородом

В настоящее время для подготовки космонавтов к выходу в космос существуем несколько способов. Как и раньше, большинство из них тренируются в космических лабораториях. Это переоборудованный самолёт, движущийся по баллистической траектории. Такой способ тренировки позволяет космонавтам до 40 секунд погружаться в состояние невесомости, отрабатывая необходимые навыки.

Российская компания Росскосмос и ряд других, производят самолёты, способные осуществлять полеты достигая состояния невесомости, не выходя в космос. За время полета, а это обычно полтора часа, пилот проводит около десяти сессий по 25 секунд невесомости. Процесс довольно дорогостоящий, но тем не менее, позволяет желающему, не выходя в космическое пространство, очутится в невесомости.

По физике 7, 9, 10 класс кратко

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector