Как работает реактивный двигатель? кратко

Концепция непрерывного цикла сгорания д-ра Ханса фон Охайна

Ханс фон Охайн был немецким авиаконструктором, который получил докторскую степень по физике в Геттингенском университете в Германии, а затем стал младшим помощником Хьюго фон Поля, директора Физического института в университете.

В то время фон Охайн исследовал новый тип авиационного двигателя, для которого не требовался пропеллер. Ему было всего 22 года, когда он впервые задумал идею двигателя внутреннего сгорания с непрерывным циклом в 1933 году. Фон Охайн запатентовал конструкцию реактивного двигателя в 1934 году, очень схожую по концепции с сэром Уиттлом, но отличающуюся внутренней компоновкой.

По взаимной рекомендации Хьюго фон Поля фон Охайн присоединился к немецкому авиастроителю Эрнсту Хейнкелю, который в 1936 году в то время искал помощи в разработке новых авиационных двигательных установок. Он продолжил разработку своих концепций реактивных силовых установок, успешно испытав на стенде один из своих двигателей. Сентябрь 1937 г.

Хейнкель спроектировал и сконструировал небольшой самолет, известный как Heinkel He178, в качестве испытательного стенда для этой новой двигательной установки, которая впервые взлетела 27 августа 1939 года.

Фон Охайн разработал второй усовершенствованный реактивный двигатель, известный как He S.8A, который впервые был запущен 2 апреля 1941 года.

Реактивный двигатель и принцип его работы

Любой из нас способен воочию наблюдать явление реактивной реакции. Все что необходимо, надуть воздушный шарик и отпустить. Каждый знает, что произойдет далее: из шарика будет вырываться поток воздуха, который будет двигать тело шарика в противоположном направлении.

Согласитесь, очень похоже на то, как кальмар, сокращая свои мышцы, создает струю воды, толкающую его в противоположном направлении.

Наблюдения, описанные выше, получили точные научные объяснения, были отображены в физических законах:

  • закон сохранения импульса;
  • третий закон Ньютона.

Именно на них основывается принцип работы реактивного двигателя: в двигатель поступает поток воздуха, который сгорает в камере внутреннего сгорания, смешиваясь с топливом, в результате чего образуется реактивная струя, заставляющая тело двигаться вперед.

Принцип работы достаточно прост, однако устройство подобного двигателя довольно сложное и требует точнейших расчетов.

Устройство реактивного двигателя

С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.

На рисунке 4 изображено устройство реактивного двигателя.

Рисунок 4 — Устройство реактивного двигателя

Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.

После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.

Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.

Турбовальные и иные виды ТРД

Я думаю мне удалось продемонстрировать связь всех видов ТРД друг с другом, и огромное множество применений этого революционного изобретения рассматривать не имеет смысла. Скажем лишь, что не только самолеты используют реактивную мощность, но и вертолеты.

На вертолетах ТРД установлен таким образом, чтобы струи газа, выходящие из сопла, были направлены назад. Это помогает уменьшить расход топлива и скорость при движении вперед. А вот основной потребитель мощности, через вал и редуктор реактивной турбины, установлен перпендикулярно турбодвигателю — на крыше. В принципе через редуктор можно передать вращательное движение от вала куда угодно и как угодно. Такие ТРД называют турбовальными.

Двигатель для турбовинтовых самолетов также вариация турбовального двигателя

Использованы материалы:Большая российская энциклопедия

Виды турбореактивных двигателей в авиации

Турбореактивные установки используются сейчас во многих областях техники, сохраняя единый принцип действия. В основе различий в типах ТРД лежит использование кинетической энергии газа, оставшейся после прохождения турбинных колес. Ее можно использовать как напрямую — то есть как реактивную струю, а можно направить еще на ряд турбинных колес, только уже вращающих другие валы. С каждым таким колесом струя газа будет терять энергию, и последующее использование ее реактивных качеств будет уже неоправданным, но как оказалось большим самолетам лучше всего летать не за счет непосредственно реактивной струи газа из камеры сгорания, а за счет большого винта, либо за счет вентилятора огромного диаметра.

Такое раздельное использование газовой струи ввело в обиход двигателестроителей такое понятие как «двухконтурность» турбореактивных двигателей. Контур — это один путь для воздушной струи через двигатель, соответственно один контур — это всегда главная газовая турбина, а второй контур это вентилятор огромного диаметра, создающий гораздо более массивный воздушный поток. Если объем одного контура превышает объем другого, речь идет о большой или малой степени двухконтурности.

Турбовинтовой двигатель

Начнем с двигателей с самым большим показателем степени двухконтурности (это условное выражение, так как подобные двигатели не принято называть двухконтурными) — Турбовинтовых ТРД.

Во главе угла газовая турбина, есть и компрессор низкого и высокого давления, и воздухозаборник, правда не прямоточный, а также камера сгорания и турбина отбора мощности, так сказать, да, чуть не забыл про сопло. Хотя от него в данном двигателе толку никакого нет. Струя газа после камеры сгорания тратит 5% своей энергии на вращение компрессоров, и 90% на вращение турбинного колеса, установленного на валу воздушного винта, через планетарный редуктор для увеличения мощности, за счет снижения оборотов. Таким образом реактивная струя вращает массивный винт, который действительно очень большой. Самолеты на поршневых двигателях не могли о таких винтах даже мечтать.

Сейчас большая авиация уже отказалась от таких двигателей в пользу турбовентиляторных ТРД, однако на малой авиации турбовиновые машины не теряют популярность. Даже на небольшие самолеты есть возможность установки турбовинтовых моторов, так как они гораздо надежней поршневых двигателей внутреннего сгорания, однако производство ТРД всегда обходится дороже, так как там важна точность обработки материалов и их качество, ведь работать предстоит при высоких давлениях, скоростях и температурах.

Турбовентиляторный двигатель

Вот здесь можно разгуляться по степеням двухконтурности, каких соотношений только в мире не найти. В свое время инженеры заметили, что вентилятор, состоящий из большого количества лопастей (как большой компрессор ТРД), способен создавать более быстрый и стабильный поток воздуха, нежели винт, но и это не все прелести. Многие из нас, кто родом из СССР, наверняка помнят, что было, когда где-то в небе пролетал самолет

Неважно какая у него была высота, хоть все 11 км, всегда у земли был слышен грохот реактивных машин или винтов. Жизнь возле аэропортов вообще представляла из себя сущий кошмар, с трясущимися стенами

Но вот сейчас все это в прошлом. Разве что военные учения с их турбовинтовыми бомбардировщиками, напомнят о прошлых временах в авиации.

Так вот турбовентиляторный ТРД подарил нам тишину. Их гигантский размер и высокая мощность не требуют высоких оборотов, а значит не производят сильный шум.

Как можно видеть из схемы, основное отличие от турбовинтового двигателя заключается в том, что отбор реактивной мощности идет на вращение вентилятора, а не винта. Турбовентиляторный двигатель создает движущую реактивную струю на 70% за счет вентилятора, 30% выходящих из сопла газов.

Турбовентиляторный двигатель

Испытания ПВРД

В конце апреля 1944 года в тесном сотрудничестве НИИ авиации в Брауншвейге и научно-исследовательский институт аэродинамики (Aerodynamischen Versuchsanstalt) в Геттингене начали совместные исследования моделей. Целью этих исследований было установление окончательной формы силовой установки, а также конструкторские работы по созданию оптимальных форсунок и испарителя.

Конфигурация корпуса (трубы) силовой установки, соответствующая последним результатам аэродинамических исследований, была окончательно определена в середине июля 1944 года, а в конце месяца на заводе компании Focke-Wulf в Бад-Айльзене (Bad Eilsen) завершилось изготовление двух опытных образцов (Рис. 2).

Рис. 2. Форма силовой установки, подобранная после завершения испытаний в научно-исследовательском институте аэродинамики, Геттинген

Однако следующий шаг, предложенный доктором Пабстом – провести лётные испытания для изучения влияния ПВРД на летные характеристики и поведение самолета в воздухе – так и не был сделан. Хотя конструкторская документация по установке корпусов опытных ПВРД на законцовках крыла истребителя FW 190 была полностью разработана, испытания не состоялись из-за отказа поставить самолет для этих целей (Рис. 3).

Рис. 3. Схема размещения ПВРД на законцовках крыла истребителя FW 190A-10

Насколько быстро шла разработка корпуса ПВРД, настолько же проблемным оказалось создание работоспособного испарителя, в котором должно было испаряться тяжелое высококипящее топливо (каменноугольное масло ). Уже при первых принципиальных отработках возникли значительные проблемы с подачей необходимого количества топлива, которое должно было поступать в камеру сгорания в виде паров, со смесеобразованием, с регулировкой подачи топлива, установлением необходимого количества подаваемого топлива и поддержанием фронта пламени.

Сначала в компании Focke-Wulf рассчитывали завершить разработки в течение четырех месяцев, но вскоре стало понятно, что эти сроки иллюзорны и нереальны. В результате инженеры компании сконцентрировались на разработке камеры сгорания, которая могла бы работать без испарителя топлива.

В середине августа 1944 года была представлена первая работоспособная модель ПВРД. Эту силовую установку направили в Брауншвейгский НИИ авиации. Однако несмотря на то, что руководитель группы разработок (Chef der Amtsgruppe «Entwicklung») технического отдела подполковник Кнемайер (Oberstleutnant Knemeyer) в письме напомнил о необходимости провести испытания как можно быстрее, эти испытания камеры сгорания не были начаты. На это была серьезная причина: незадолго перед изготовлением первого работоспособного образца ПВРД бомбардировщики союзников нанесли удар по химическому комбинату Leuna-Werke, производившему необходимый для испытаний пропан. Завод был серьёзно поврежден и о быстром восстановлении производства пропана на нем не могло быть и речи.

После этого в середине сентября доктор Пабст предложил проводить испытания, используя в качестве топлива водород. Монтаж двухсот баллонов с водородом в испытательном центре Люфтваффе в Ораниенбурге (Oranienburg) растянулся на месяцы. Только в конце января 1945 года, когда было установлено всё необходимое для выполнения измерений оборудование и проведена сборка силовой установки, были выполнены измерения сопротивления обшивки неработающего ПВРД. В середине февраля стало возможным производить измерения величины тяги работающей силовой установки. При расходе воздуха 0,705 кг/с скорость газов на выходе из сопла составляла 352 м/с, что соответствовало расчетным данным. (Рис. 4).

Рис. 4. ПВРД, разработанный компанией Focke-Wulf

В декабре 1944 года по заказу верховного командования ВВС (степень срочности «DE») предусматривалось изготовить четыре предсерийных прямоточных воздушно-реактивных двигателя, которые можно было бы использовать на самолётах. Исследования в рамках этого заказа должны были вестись до конца августа 1945 года, но после того как войска противника заняли Брауншвейг и Бад-Айльзен, эти испытания прекратились.

Позднее, когда между союзниками по Антигитлеровской коалиции возникли разногласия, исследования, проводившиеся под руководством доктора Цобеля и доктора Пабста, были внимательно изучены. Союзники оценили их как новаторские и значительные. Согласно рассекреченным документам эти результаты использовались американскими и английскими научно-исследовательским институтами в качестве основы для ведущихся ими исследований. Захваченные союзниками материалы стали открыто публиковать только в 1955 году.

Немного теории или как летают самолеты

Любой реактивный двигатель — это сложнейший механизм, состоящий из огромного числа элементов

Основным параметром, определяющим характеристики работы любого реактивного двигателя, является тяга (или сила тяги), которую мотор развивает в сторону движения летательного аппарата. Она описывается формулой:

Для ее создания необходимо несколько составляющих:

  • Источник первичной энергии, превращающийся в кинетическую энергию реактивной струи;
  • Рабочее тело, которое образует поток и выбрасывается из РД;
  • Сам реактивный двигатель, где происходят обозначенные процессы.

В ВРД в качестве первичной используется энергия сгорания химических веществ, то есть – это типичный тепловой двигатель. Главное условие функционирования подобной системы – превышение давления рабочего тела над атмосферным перед началом цикла расширения. Причем чем больше эта разница, тем выше эффективность ВРД. Все существующие в настоящий момент типы реактивных двигателей в первую очередь отличаются способом достижения этого перепада давлений, именно он и определяет их основные технические особенности.

Рабочее тело воздушных реактивных двигателей представляет собой смесь продуктов сгорания топлива с фракциями воздуха, оставшимися после использования кислорода. Для окисления 1 кг керосина – основного топлива для реактивных двигателей – необходимо примерно 15 кг воздуха.

В состав конструкции любого ВРД входит камера сгорания, где происходит окисление горючего, и реактивное сопло, из которого выбрасывается раскаленный газ, а тепловая энергия превращается в кинетическую, создавая при этом тягу.

Недостатки реактивного двигателя

  • Создает сильный шум при работе. При взлете реактивного самолёта создается шум до 120 децибел. Для человеческого уха это значение близко к болевому порогу. Если стоять на расстоянии 100 метров от места взлета космического корабля, можно получить контузию. Ведь уровень шума достигает 150 децибел. Ученым пока не удается подавить шум от реактивного движителя или решить эту проблему иным способом.
  • Расходует большой объем топлива. Он невероятно прожорлив. Чтобы вывести на орбиту ракетную систему с исходным весом 3000 тонн, необходима установка пяти таких двигателей. Они придают рабочему телу скорость 3 км/с. При этом высвобождается 10 тонн отработанных газов в секунду. За 4 секунды в камерах без остатка сгорает одна цистерна ракетного топлива.
  • Ограниченный ресурс для космических полетов. Все виды топлива, которые применяют для ракет, выделяют ограниченное количество энергии. Этого недостаточно для совершения полетов в пределах Галактики и даже между планетами Солнечной системы. Перспективным направлением считается использование ядерной энергии.
  • Большой вес и размер летательных аппаратов. Перед учеными, изучающими космос, стоят колоссальные задачи. Одна из главных – создание летательного аппарата для межпланетных и межзвездных перелетов. Они научились выводить на земную орбиту ракеты, спутники, достигли Луны. Для дальних полетов использовать реактивный двигатель невыгодно и нецелесообразно. Ученые подчитали, что для полета ракеты на Марс, ее стартовый вес должен составлять – 30 000 тонн, а на Юпитер – 250 000 тонн. Соответственно, увеличатся и размеры летательных аппаратов.
  • Топливо расходуется быстро. Для длительного полета необходим большой объем энергоносителя. Емкости с горючим составляют значительную часть от массы самолёта или космического корабля.

Устройство

Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.

Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).

В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.

Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.

Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.

Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.

Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.

форсажная камера в разрезе, на рисунке видны завихрители.

Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.

В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.

Гиперзвуковой прямоточный воздушно-реактивный двигатель

К категории гиперзвуковых ПВРД относится ПВРД, который работает на скоростях более 5М. По состоянию на начало XXI века существование такого двигателя было только гипотетическим: не собрано ни единого образца, который бы прошел летные испытания и подтвердил целесообразность и актуальность его серийного выпуска.

На входе в устройство ГПВРД торможение воздуха выполняется только частично, и на протяжении остального такта перемещение рабочего тела является сверхзвуковым. Большая часть кинетической исходной энергии потока при этом сохраняется, после сжатия температура относительно низкая, что позволяет освободить рабочему телу значительное количество тепла. После входного устройства проточная часть двигателя по всей своей длине расширяется. За счет сгорания топлива в сверхзвуковом потоке происходит нагрев рабочего тела, оно расширяется и ускоряется.

Этот тип двигателя предназначен для проведения полетов в разреженной стратосфере. Теоретически такой двигатель можно использовать на многоразовых носителях космических аппаратов.

Одной из главных проблем конструирования ГПВРД является организация сгорания топлива в сверхзвуковом потоке.

В разных странах начаты несколько программ по созданию ГПВРД, все они находятся на стадии теоретических изысканий и предпроектных лабораторных исследований.

Где применяются ПВРД

ПВРД не работает при нулевой скорости и низких скоростях полета. Летательный аппарат с таким двигателем требует установки на нем вспомогательных приводов, в роли которых может выступать твердотопливный ракетный ускоритель или самолет-носитель, с которого производится запуск аппарата с ПВРД.

По причине неэффективности ПВРД на малых скоростях его практически неуместно использовать на пилотируемых самолетах. Такие двигатели предпочтительно использовать для беспилотных, крылатых, боевых ракет одноразового применения благодаря надежности, простоте и дешевизне. ПВРД также применяют в летающих мишенях. Конкуренцию по характеристикам ПВРД составляет только ракетный двигатель.

Возвращение к двухконтурной схеме

Впоследствии под руководством Архипа Люльки был создан целый ряд удачных реактивных двигателей, которыми оснащались самолеты Сухого, Туполева, Ильюшина, Бериева. По решению руководства страны двигатели, созданные в ОКБ А.М. Люльки, стали именоваться инициалами конструктора – АЛ – Архип Люлька.

Только спустя более 30 лет после получения патента Архип Михайлович смог вернуться к одному из своих первых проектов – двухконтурному турбореактивному двигателю. Такие двигатели, построенные по схеме Люльки, уже разрабатывались и в СССР, и за рубежом. Но ОКБ Люльки до этого момента продолжало заниматься одноконтурным направлением, так как оно обладало большим запасом для развития.


Двигатель АЛ-31Ф М2. Фото: wikimedia.org

Суть изобретения Архипа Михайловича заключалась в том, что он предложил добавить в двигатель еще один воздушный контур. По нему часть воздушного потока проходит без нагрева и выбрасывается наружу без сгорания вместе с горячими газами. Использование второго контура позволило снизить потребление топлива двигателем. На дозвуковой скорости ТРДД обеспечивал экономный режим, а в случае форсажа самолет мог достигать сверхзвуковых скоростей. Сейчас по этой схеме строится абсолютное большинство турбореактивных двигателей в мире.

Современные двигатели отличаются степенью двухконтурности, то есть соотношением объема воздуха, проходящего через внешний контур, и объема воздуха, проходящего через внутренний контур. В военных самолетах применяются двигатели с низкой степенью двухконтурности, так как им важна большая тяга, а расход топлива второстепенен. Для гражданских самолетов характерны силовые установки с высокой степенью двухконтурности, где основная тяга создается за счет внешнего контура. Такие двигатели более экономны.

Работы по двигателю начались в 1972 году и продолжались 13 лет до момента окончания государственных испытаний. Сам Архип Люлька не дожил до завершения работ над АЛ-31Ф, уйдя из жизни в 1984 году.
 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector