Размеры звезд

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Эволюция и будущее

Ученые убеждены, что Солнце появилось 4.57 млрд. лет назад из-за крушения части молекулярного облака, представленного водородом и гелием. При этом оно запустило вращение (из-за углового момента) и начало нагреваться с ростом давления.

Большая часть массы сконцентрировалась в центре, а остальное превратилось в диск, который позже сформирует известные нам планеты. Гравитация и давление привели к росту тепла и ядерному синтезу. Произошел взрыв и появилось Солнце. На рисунке можно проследить этапы эволюции звезд.

Сейчас звезда пребывает в фазе главной последовательности. Внутри ядра трансформируется больше 4 млн. тон вещества в энергию. Температура постоянно растет. Анализ показывает, что за последние 4.5 млрд. лет Солнце стало ярче на 30% с увеличением в 1% на каждые 100 млн. лет.

Полагают, что в итоге оно начнет расширяться и превратится в красного гиганта. Из-за увеличения размера погибнет Меркурий, Венера и, возможно, Земля. В фазе гиганта пробудет примерно 120 млн. лет.

Потом начнется процесс уменьшения размера и температуры. Оно продолжит сжигать остатки гелия в ядре, пока не закончатся запасы. Через 20 млн. лет оно потеряет стабильность. Земля уничтожится или же раскалится. Через 500000 лет останется лишь половина солнечной массы, а внешняя оболочка создаст туманность. В итоге, мы получим белый карлик, который проживет триллионы лет и лишь потом станет черным.

Список ближайщих к Солнцу звезд

Звёздная система Звезда или коричневый карлик Спек. класс Вид. зв. вел. Расстояние,св. год
Солнечная система Солнце G2V −26,72 ± 0,04 8,32 ± 0,16 св. мин
1 α Центавра Проксима Центавра 1 M5,5Ve 11,09 4,2421 ± 0,0016
α Центавра A 2 G2V 0,01 4,3650 ± 0,0068
α Центавра B 2 K1V 1,34
2 Звезда Барнарда 4 M4Ve 9,53 5,9630 ± 0,0109
3 Луман 16 A 5 L8 23,25 6,588 ± 0,062
B 5 L9/T1 24,07
4 WISE 0855–0714 7 Y 13,44 7,18+0,78−0,65
5 Вольф 359 8 M6V 13,44 7,7825 ± 0,0390
6 Лаланд 21185 9 M2V 7,47 8,2905 ± 0,0148
7 Сириус Сириус A 10 A1V −1,43 8,5828 ± 0,0289
Сириус B 10 DA2 8,44
8 Лейтен 726-8 Лейтен 726-8 A 12 M5,5Ve 12,54 8,7280 ± 0,0631
Лейтен 726-8 B 12 M6Ve 12,99
9 Росс 154 14 M3,5Ve 10,43 9,6813 ± 0,0512
10 Росс 248 15 M5,5Ve 12,29 10,322 ± 0,036
11 WISE 1506+7027 16 T6 14.32 10,521
12 ε Эридана 17 K2V 3,73 10,522 ± 0,027
13 Лакайль 9352 18 M1,5Ve 7,34 10,742 ± 0,031
14 Росс 128 19 M4Vn 11,13 10,919 ± 0,049
15 WISE 0350-5658 20 Y1 22.8 11,208
16 EZ Водолея EZ Водолея A 21 M5Ve 13,33 11,266 ± 0,171
EZ Водолея B 21 M? 13,27
EZ Водолея C 21 M? 14,03
17 Процион Процион A 24 F5V-IV 0,38 11,402 ± 0,032
Процион B 24 DA 10,70
18 26 K5V 5,21 11,403 ± 0,022
26 K7V 6,03
19 28 M3V 8,90 11,525 ± 0,069
28 M3,5V 9,69
20 30 M1,5V 8,08 11,624 ± 0,039
30 M3,5V 11,06
21 32 K5Ve 4,69 11,824 ± 0,030
32 T1V >23
32 T6V >23
22 35 M6,5Ve 14,78 11,826 ± 0,129
23 36 G8Vp 3,49 11,887 ± 0,033
24 GJ 1061 37 M5,5V 13,09 11,991 ± 0,057
25 YZ Кита 38 M4,5V 12,02 12,132 ± 0,133
26 Звезда Лейтена 39 M3,5Vn 9,86 12,366 ± 0,059
27 40 M6,5V 15,14 12,514 ± 0,129
28 41 M8,5V 17,39 12,571 ± 0,054
42 T6
29 Звезда Каптейна 43 M1,5V 8,84 12,777 ± 0,043
30 44 M0V 6,67 12,870 ± 0,057
31 45 Y1 21,1 13,046
32 Крюгер 60 Крюгер 60 A 46 M3V 9,79 13,149 ± 0,074
Крюгер 60 B 46 M4V 11,41
33 48 M8,5V 17,39 13,167 ± 0,082
34 49 T9 24.32 13,259
35 50 M4,5V 11,15 13,349 ± 0,110
50 M5,5V 14,23
37 53 M3V 10,07 13,820 ± 0,098
38 Звезда ван Маанена 54 DZ7 12,38 14,066 ± 0,109
  №   Обозначение Обозначение   №   Спек. класс Вид. зв. вел. Расстояние,св. год
Звёздная система Звезда или коричневый карлик

Солнце – основа нашей системы – ближайшая к Земле звезда, которую, в отличие от всех остальных объектов, мы отчетливо видим ясным днем. В ночное же время становятся доступны для наблюдения остальные светила бескрайнего космоса. Количество звезд, наполняющих Вселенную, подсчитать невозможно. Но ближайшие небесные тела, находящиеся в радиусе 16 световых лет, ученые обозначили и составили список. В него вошли 57 звездных систем. Некоторые из них – это не одинокие светила, а двойные и тройные звезды, поэтому общее количество небесных тел достигает 64. В перечень внесли и 13 коричневых карликов, ощутимо уступающих остальным объектам по массе.

Ближайшие окрестности Солнца

Только 7 звезд из списка мы можем рассмотреть без помощи оптического усиления – Сириус, Альфа Центавра, Эпсилон Эридана, Процион, Эпсилон Индейца, Тау Кита, 61 Лебедя. Все они имеют видимую величину в границах от 1,43 до 6,03. Большинство светил относятся к спектральному классу M (красный), их температура составляет 2600-3800 K. Горячие звезды – Сириус A, спектрального класса A (белый), 9940 K и Процион A, класс F (желто-белый), 6650 K. Коричневые карлики, вошедшие в список, относятся к дополнительным спектральным классам L, T, Y. В перечень попали и 4 белых карлика класса D, представляющие довольно редкие объекты в видимом секторе Галактики.

По потенциальной обитаемости

Другой способ определения солнечного близнеца — это «хаб-звезда» — звезда с качествами, которые считаются особенно гостеприимными для планеты, в которой обитает жизнь. Рассматриваемые качества включают изменчивость, массу, возраст, металличность и близких спутников.

  • Возраст не менее 0,5-1 миллиарда лет
  • На главной последовательности
  • Без переменных
  • Способен укрывать планеты земной группы
  • Поддерживать динамически стабильную жилую зону
  • 0-1 неширокие звездные звезды-компаньоны.

Требование, чтобы звезда оставалась на главной последовательности не менее 0,5–1 млрд лет, устанавливает верхний предел примерно 2,2–3,4 массы Солнца, что соответствует самому горячему спектральному классу A0 — B7V . Такие звезды могут быть в 100 раз ярче Солнца. Тихоходок -как жизни (за счет УФ — потока) потенциально могут выжить на планет , вращающихся вокруг звезды , как горячий , как B4V, с главной последовательности жизни 0,1 Ga (100 млн лет ), массой ~ 10  М , и при температуре 20000 К.

Неизменяемость в идеале определяется как изменчивость менее 1%, но 3% — это практический предел из-за ограничений в имеющихся данных. Изменение освещенности в обитаемой зоне звезды из-за звезды-компаньона с эксцентрической орбитой также вызывает беспокойство.

Планеты земной группы в нескольких звездных системах, содержащих три или более звезд, вряд ли будут иметь стабильные орбиты в долгосрочной перспективе. Стабильные орбиты в двойных системах принимают одну из двух форм: орбиты S-типа (спутниковые или околозвездные) орбиты вокруг одной из звезд и орбиты P-типа (планетарные или околозвездные) вокруг всей двойной пары. Эксцентрические Юпитеры также могут нарушать орбиты планет в обитаемых зонах.

Металличность не менее 40% солнечной ([Fe / H] = -0,4) требуется для образования земной планеты земного типа. Высокая металличность сильно коррелирует с образованием горячих юпитеров , но это не абсолютные препятствия для жизни, поскольку некоторые газовые гиганты в конечном итоге сами вращаются в пределах обитаемой зоны и потенциально могут содержать спутники, похожие на Землю.

Одним из примеров такой звезды является HD 70642  , G5V, с температурой 5533K, но она намного моложе Солнца, возрастом 1,9 миллиарда лет.

Другим таким примером может быть HIP 11915 , имеющий планетную систему, содержащую подобную Юпитеру планету, вращающуюся на таком же расстоянии, что и планета Юпитер в Солнечной системе. Чтобы усилить сходство, звезда относится к классу G5V, имеет температуру 5750 К, массу и радиус, подобные Солнцу, и всего на 500 миллионов лет моложе Солнца. Таким образом, обитаемая зона будет простираться в той же области, что и зона в Солнечной системе, примерно на 1 а.е. Это позволило бы планете, похожей на Землю, существовать около 1 а.е.

Солнце — это звезда или планета?

В V веке до н. э. был обвинен в осквернении богов и, чудом избежав смертной казни, с позором изгнан из Афин философ Анаксагор, утверждающий, что Солнце — раскаленная глыба. Аристарх Самосский (310-230 гг. до н. э.) впервые предположил, что планеты и Земля вращаются вокруг Солнца. Но почти на тысячу лет утвердилась картина мира, предложенная Гиппархом Никейским (190-126 гг. до н. э.). На заре тысячелетия она была математически обоснована в труде «Альмагест» Птолемеем (100-170 гг.) и получила его имя. Согласно птолемеевской системе, в центре мироздания, вокруг которого вращаются небесные сферы, располагается Земля. Вообще, борьба между гео- и гелиоцентризмом — отдельный разговор! Только факты: привычное нам описание мироустройства сформулировал польский астроном Н. Коперник в 16 веке (труд издан в 1543 г.), но окончательное подтверждение эта система получила только в 1687 году благодаря сэру Ньютону и его теории.

Солнце — это звезда или планета? Поскольку «планета» в переводе с древнегреческого — «блуждающая звезда», астрономы того времени и считали светило одним из семи известных, меняющих свое положение среди звезд, небесных тел, т. е. планетой. Предположения, что Солнце — это обычная звезда, высказывались различными учеными неоднократно. Точку в дискуссиях поставил немецкий физик Й. Фраунгофер, в 1824 году сравнив спектральные данные некоторых звезд и Солнца.

Строение Солнца


Схема структуры Солнца. Изображение: Pbroks13 / Wikimedia Commons1-Ядро; 2-Зона лучистого переноса; 3-Зона конвективного переноса; 4-Фотосфера; 5-Хромосфера; 6-Корона; 7-Солнечные пятна; 8-Гранулы; 9-Протуберанец

Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

Ядро

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Солнечное ядро

Ядро — центральная часть Солнца. Экспериментальным путем установлено, что солнечное ядро по размеру составляет примерно 25 % от всего радиуса Солнца и состоит из сильно сжатого вещества. Масса ядра — почти половина от общей массы Солнца. Условия в сердцевине нашего светила экстремальные. Температура и давление достигают там максимальных показателей: температура ядра составляет примерно 14 млн К, а давление в нем достигает 250 млрд атм. Газ в солнечном ядре более чем в 150 раз плотнее воды. Это именно то место, где протекает термоядерная реакция, сопровождаемая выделением энергии. Водород превращается в гелий, а вместе с ним появляются свет и тепло, которые затем доходят до нашей планеты и дают ей жизнь.

На расстоянии от ядра более 30 % радиуса температура становится менее 5 млн градусов, поэтому ядерные реакции там уже почти не происходят.

Зона лучистого переноса

Зона лучистого переноса расположена у границы ядра. Предположительно она занимает около 70 % всего радиуса звезды и состоит из горячего вещества, через которое тепловая энергия передается от ядра к внешнему слою.

В результате термоядерной реакции, протекающей в солнечном ядре, образуются различные радиационные фотоны. Пройдя сквозь зону лучистого переноса и все последующие слои, они выбрасываются в космос и блуждают по там вместе с солнечным ветром, доходящим от Солнца до Земли всего за 8 минут. Ученым удалось установить, что на преодоление этой зоны фотонам требуется приблизительно 200 000 лет.

Зона лучистого переноса есть не только у Солнца, но и у других звезд. Ее величина и сила зависят от размера звезды.

Интересные факты

Давайте изучим самые интересные факты о Солнца — единственной звезде Солнечной системы.

Если мы заполняем нашу звезду Солнце, то внутри поместится 960000 Земель. Но если их сжать и лишить свободного пространства, то количество увеличится до 1300000. Поверхностная площадь Солнца в 11990 раз больше земной.

По массе превосходит земную в 330000 раз. Примерно ¾ отведено на водород, а остальное – гелий.

Разница между экваториальным и полярным диаметрами Солнца составляет всего 10 км. А значит, перед нами одно из наиболее приближенных к сфере небесных тел.

В ядре Солнца такая температура возможна благодаря синтезу, где водород трансформируется в гелий. Обычно горячие объекты поддаются расширению, поэтому наша звезда могла бы взорваться, но удерживается мощной гравитацией. При этом температура поверхности Солнца равна «всего» 5780 °C.

Когда Солнце израсходует весь водородный запас (130 млн. лет), то перейдет к гелию. Это заставит ее увеличиваться в размерах и поглощать первые три планеты. Это этап красного гиганта.

После красного гиганта оно рухнет и оставит сжатую массу в шарике земного размера. Это стадия белого карлика.

Земля отдалена от Солнца на 150 млн. км. Скорость света – 300000 км/с, поэтому лучу требуется 8 минут и 20 секунд

Но важно также понимать, что ушли миллионы лет, прежде чем фотоны света перешли с солнечного ядра на поверхность

Солнце отдалено от галактического центра на 24000-26000 световых лет. Поэтому на орбитальный путь тратит 225-250 млн. лет.

Земля движется по эллиптическому орбитальному пути, поэтому удаленность составляет 147-152 млн. км (астрономическая единица).

Возраст Солнца – 4.5 млрд. лет, а значит оно уже сожгло примерно половину водородного запаса. Но процесс будет продолжаться еще 5 млрд. лет.

Солнечные вспышки выделяются в период магнитных бурь. Мы видим это в качестве формирования солнечных пятен, где скручиваются магнитные линии и вращаются словно земные торнадо.

Солнечный ветер представляет собою поток заряженных частичек, проходящих сквозь всю Солнечную систему на ускорении в 450 км/с. Ветер появляется там, где распространяется магнитное поле Солнца.

Само слово произошло от древнеаглийского, обозначающего «юг». Есть также готические и германские корни. До 700 года н.э. воскресенье называли «солнечный день». Свою роль сыграл и перевод. Изначальное греческое «heméra helíou» перешло в латинское «dies solis».

Система Проксима-Центавра

И ве же в одном смысле эта новость отличается от аналогичных выводов, сделанных в последние годы. Дело в том, что сама по себе Проксима Центавра слишком слаба, чтобы увидеть ее невооруженным глазом, но она является ближайшей к Земле звездой. Если мы когда-нибудь сможем выйти за пределы Солнечной системы и направятся к другой, мы, вероятно, полетим прямиком к Проксиме. Возможно, там нет ничего – ни колонии микробов, ни сообщества высокоразвитых существ. Но что касается прослушивания космоса, то в попытке обнаружить признаки чего-то знакомого и необычного Проксима Центавра может оказаться разумной мишенью.

Земля и Проксима Центавра b в представлении художника.

С момента своего открытия в 1915 году Проксима регулярно появлялась в научно-фантастических рассказах о межзвездных ковчегах и инопланетных империях. В 1960-х годах ученые всерьез озадачились поискам жизни за пределами Земли и Проксима Центавра была рассмотрена исследователями одной из первых. Когда ваш поиск охватывает наблюдаемую Вселенную, близость, безусловно, имеет значение.

Интересно, что Проксима не похожа на наше Солнце, она прохладнее и тусклее. Но у нее есть по крайней мере две планеты. Одна из них, Проксима c, вращается дальше от звезды, словно миниатюрный Нептун. Другая, Проксима b, находится ближе – настолько близко, что год на ней длится всего 11 дней. Проксима b – это скалистая планета, примерно такого же размера, как Земля, и находится в пределах обитаемой зоны звезды – области, где температура может позволить воде течь по ее поверхности.

Мы не знаем как выглядит Проксима b, а астрономы, изучающие BLC1, не предполагают, что источник сигнала возник именно там. Вопреки некоторым научно-фантастическим рассказам, Проксима b вряд ли станет для нас вторым домом. Известно, что такие звезды как Проксима Центавра испускают потоки радиации, достаточные для того, чтобы в течение многих лет лишать близлежащую планету ее атмосферы.

На этом снимке Проксима Центавра обведена красным кружочком

Энтузиазм общественности по поводу BLC1, возможно, был преждевременным, но если человечество когда-нибудь поймает сигнал от развитой инопланетной цивилизации, он может прийти откуда-то поблизости. Может показаться самонадеянным предположение о том, что из сотен миллиардов звезд Млечного Пути мы могли бы обнаружить разумную жизнь так близко к Земле.

Да, это довольно самонадеянно, но не невозможно. В конце концов недавно астроном Оксфордского университета Ави Леб высказал предположение о том, что таинственный астероид Оумуамуа, вторгшийся в нашу Солнечную систему в 2017 году, вполне мог оказаться как инопланетным кораблем, так и инопланетным разведывательным зондом. Хотя исследователи из Breakthrough Listen предупреждают, что при дальнейшем анализе необычный сигнал, скорее всего, окажется всего лишь радиопомехой от человеческой технологии — что уже случалось раньше — окончательные выводы еще не сделаны. А значит возможно все.

Жизненный цикл[]

Солнце является молодой звездой третьего поколения (популяции I) с высоким содержанием металлов, то есть оно образовалось из останков звёзд первого и второго поколений (соответственно популяций III и II).

Текущий возраст Солнца (точнее — время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 млрд лет.

Считается, что Солнце сформировалось примерно 4,59 млрд лет назад, когда быстрое сжатие под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа звёздного населения.

Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 млрд лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 млн тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтринов.

Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. Вместо этого, согласно существующим представлениям, через 4—5 млрд лет оно превратится в красный гигант. По мере того, как водородное топливо в ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться. Примерно через 7,8 млрд лет, когда температура в ядре достигнет приблизительно 100 млн К, в нём начнётся термоядерная реакция синтеза углерода и кислорода из гелия. На этой фазе развития температурные неустойчивости внутри Солнца приведут к тому, что оно начнёт терять массу и сбрасывать оболочку. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента потеря Солнцем массы приведёт к тому, что Земля перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы.

Несмотря на это, вся вода на Земле перейдёт в газообразное состояние, а её атмосфера будет сорвана сильнейшим солнечным ветром. Увеличение температуры Солнца в этот период таково, что в течение следующих 500—700 млн лет поверхность Земли будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании. По мнению профессора Дж. Кастинга, исчезновение жизни из-за повышения температуры, вследствие увеличения яркости Солнца.

После того как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана, и из неё образуется планетарная туманность. В центре этой туманности останется сформированный из очень горячего ядра Солнца белый карлик, который в течение многих миллиардов лет будет постепенно остывать и угасать. Данный жизненный цикл считается типичным для звёзд малой и средней массы.

Конвективная зона

Зона конвекции — последняя во внутреннем строении Солнца и других подобных ему звезд. Она расположена снаружи зоны лучистого переноса и занимает последние 20 % от радиуса Солнца (около трети от объема звезды). Энергия в ней передается конвекцией. Конвекция — это передача тепла струями и потоками, посредством активного перемешивания. Этот процесс напоминает кипение воды. Потоки горячего газа перемещаются к поверхности и отдают тепло наружу, а остывший газ устремляется обратно, вглубь Солнца, благодаря чему реакция ядерного синтеза продолжается. По мере приближения к поверхности температура вещества в конвективной зоне падает до 5800 К. Конвективная зона, как и зона лучистого переноса, есть почти у всех звезд.

Все вышеперечисленные слои Солнца не наблюдаемы.

Проксима Центавра – самая близкая звезда к Земле

Проксима Центавра – красный карлик, который тоже входит в систему тройной звезды Альфа Центавра. Но он расположен очень далеко от двух основных и более крупных компонентов системы – 15000 астрономических единиц, или 0.21 светового года. Кстати, это расстояние всего лишь в 20 раз меньше, чем до Земли.

Из-за большой удалённости от центра системы Проксима Центавра делает оборот по своей орбите за 500 тысяч лет. В данный момент она находится на участке орбиты перед Альфой Центавра, поэтому Проксима Центавра – самая близкая звезда к Земле на ближайшие тысячелетия. Потом она перейдёт на отдалённый участок орбиты и ближайшей звездой станет Альфа Центавра, то есть её компоненты A и B.

На небе Проксима Центавра находится в 2.2 градусах от Альфы — как 4 лунных диска, но невооружённым глазом не видна, её яркость 11 m. Поэтому найти эту ближайшую к нам звезду можно только в телескоп, даже небольшой.

Хотя эта звезда и наш ближайший сосед, но она очень тусклая. По размеру она в 7 раз меньше и легче Солнца. Даже если её наблюдать непосредственно с одной из планет Альфы Центавра (если они там есть), то и тогда Проксима выглядела бы на небе тусклой звездой 5-й величины.

Если бы мы находились вблизи главных звёзд Альфы Центавра, то Проксима выглядела бы тусклой звездой (красноватая звезда указана стрелкой).

Проксима Центавра, кстати, имеет планету в обитаемой зоне, её существование подтвердила Европейская южная обсерватория в 2016 году.  Эта планета небольшого размера, и подобна Земле, находится на расстоянии 0.5 а.е. от звезды.

Ближайшая звезда к Земле — Проксима Центавра. Так она могла бы выглядеть на небе одной из своих планет. Скриншот из симулятора Вселенной Space Engine.

Но может ли там существовать жизнь – вопрос очень спорный. Ведь Проксима Центавра – нестабильный красный карлик, который периодически вспыхивает и уровень его излучения в эти периоды сильно возрастает, в том числе и в рентгеновском диапазоне. Хотя в океанах, если они там есть, жизнь была бы достаточно защищена, да и в ходе эволюция жизнь там могла бы приспособиться к местным условиям. Возраст звезды – почти 5 миллиардов лет, так что там всё возможно.

Мало того, в 2019 году было сообщение, что у Проксимы Центавра обнаружена еще одна планета, на удалении 1.5 а.е. от звезды. Она минимум в 6 раз тяжелее Земли и имеет температуру всего в 39 К. Но существование этой планеты еще требует подтверждения.

Также у Проксимы Центавра, предположительно, есть пояс астероидов. На это указывают некоторые данные, но это тоже еще требует детального изучения.

Ближайшие к Солнцу звёзды — наши соседи.

Классификация звезд по цвету

Прежде всего, разделение происходит по принципу: от горячих к холодным. Всего выделено 7 групп. В свою очередь, они делятся на категории от 0 до 9, также от самых горячих к самым холодным.

Класс О: голубые

Как уже было сказано, они имеют самую высокую температуру (в среднем 300000°С). Вероятнее всего, возникают из двойных при их слиянии. В итоге, получается одно очень яркое и массивное светило, которое сильно разогрето.

К примеру, к ним относятся Ригель, Тау Большого Пса, Дзета Ориона и другие.По оценке учёных, это довольно редкие экземпляры в нашей Вселенной.

Ригель

Класс В: белые и голубые

По большей части, это небольшие тела с нагретой поверхностью от 7 до 200000°С. В эту группу входят Альтаир, Вега и Сириус.

Вега

G класс — желтые

Установлено, что желтая звезда обладает температурой поверхности около 60000°С, а масса приблизительно как у Солнца (0,8-1,4).

Из них можно отметить светила Альхита, Дабих, Капелла и другие. Также, например, наше родное Солнце относится к карликам класса G2.

Солнце

Класс К — оранжевые

В отличие от других, для них характерен нагрев от 4000 до 60000°С. Для примера, известная звезда Альдебаран как раз имеет оранжевый цвет.

Альдебаран

М класс — красные

По сравнению с остальными, их поверхность не отличается горячностью (30000°С). А внешняя оболочка богата на углерод

Что важно, многие популярные объекты представляют данный тип. Взять хотя бы Антарес и Бетельгейзе

Между прочим, во Вселенной наиболее распространены оранжевые и красные светила.

Антарес

Источник энергии Солнца

Современная гелиосейсмология определяет возраст нашего светила в 4,6 млрд лет. Какие источники столь продолжительного существования скрывают огненные недра? Что такое Солнце как источник энергии?

Ежесекундно Солнце излучает в мировое пространство энергии в 100 тыс. раз больше, чем человечество выработало за все время своего существования. Если бы весь объем нашей звезды заполнял каменный уголь, то такого запаса топлива, при излучении с обычной интенсивностью, едва хватило на 5 тыс. лет. Химические процессы и гравитационные взаимодействия тоже не годятся на роль «долгопериодического» источника энергии.

И только с открытием атомного распада и синтеза американский астрофизик Х. Бете предположил, что Солнце — это природный термоядерный реактор. Суть процесса сводится к образованию ядра гелия из четырех ядер водорода (протонов) с выделением энергии (Нобелевская премия по физике, 1967 год).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector