Солнце

Состав и структура

Звезда наполнена водородом (74.9%) и гелием (23.8%). Среди более тяжелых элементов присутствуют кислород (1%), углерод (0.3%), неон (0.2%) и железо (0.2%). Внутренняя часть делится на слои: ядро, радиационная и конвективная зоны, фотосфера и атмосфера. Наибольшей плотностью (150 г/см3) наделено ядро и занимает 20-25% всего объема.

На оборот оси звезда тратит месяц, но это приблизительная оценка, потому что перед нами плазменный шар. Анализ показывает, что ядро вращается быстрее внешних слоев. Пока экваториальная линия тратит 25.4 дней на оборот, то у полюсов уходит 36 дней.

В ядре небесного тела формируется солнечная энергия из-за ядерного синтеза, трансформирующего водород в гелий. В нем создается почти 99% тепловой энергии.

Внутренняя структура Солнца. Радиационная зона охватывает 0.25-0.7 солнечного радиуса. Температура падает с отдалением от ядра. Здесь она сокращается от 7 млн. К до 2 млн. С плотностью происходит то же самое – от 20 г/см3 до 0.2 г/см3.

Между радиационной и конвективной зонами расположен переходный слой – тахолин. В нем заметно резкая перемена равномерного вращения радиационной зоны и дифференциальное вращение конвекционной, что вызывает серьезный сдвиг. Конвективная зона находится на 200000 км ниже поверхности, где температура и плотность также ниже.

Видимая поверхность именуется фотосферой. Над этим шаром свет может свободно распространяться в пространство, высвобождая солнечную энергию. В толщину охватывает сотни километров.

Верхняя часть фотосферы уступает по нагреву нижней. Температура поднимается к 5700 К, а плотность – 0.2 г/см3.

Атмосфера Солнца представлена тремя слоями: хромосфера, переходная часть и корона. Первая простирается на 2000 км. Переходная занимает 200 км и прогревается до 20000-100000 К. Четких границ у слоя нет, но заметен нимб с постоянным хаотичным движением. Корона прогревается до 8-20 млн. К, на что влияет солнечное магнитное поле.

Солнечная гелиосфера с кораблями Вояджер-1 и 2

Гелиосфера – магнитная сфера, простирающаяся за черту гелиопаузы (на 50 а.е. от звезды). Ее также называют солнечным ветром.

Зона лучистого переноса

Зона лучистого переноса расположена у границы ядра. Предположительно она занимает около 70 % всего радиуса звезды и состоит из горячего вещества, через которое тепловая энергия передается от ядра к внешнему слою.

В результате термоядерной реакции, протекающей в солнечном ядре, образуются различные радиационные фотоны. Пройдя сквозь зону лучистого переноса и все последующие слои, они выбрасываются в космос и блуждают по там вместе с солнечным ветром, доходящим от Солнца до Земли всего за 8 минут. Ученым удалось установить, что на преодоление этой зоны фотонам требуется приблизительно 200 000 лет.

Зона лучистого переноса есть не только у Солнца, но и у других звезд. Ее величина и сила зависят от размера звезды.

Солнце белое?

Если пропустить солнечный свет через призму, он разложится на спектр, и мы увидим области разного цвета. То есть, солнечный свет состоит из электромагнитных волн всего видимого спектра, а свет мы воспринимаем именно как электромагнитные волны с разной длиной волны. Стеклянная призма преломляет их по-разному, поэтому видно их разделение. Вы знаете это из курса школьного физики.

В солнечном свете есть электромагнитные волны всего видимого спектра, от фиолетовых до красных. Все вместе они дают белый свет. На снимках, сделанных в космосе, когда Солнце попадает в кадр, видно, что оно именно белого цвета.

Да и как иначе, если оно излучает в самых разных диапазонах, и видимый свет – лишь малая часть излучения. Притом доля желтого света в нём не больше, чем других. При температуре поверхности в 5800 К Солнце и должно быть белым.

Как добраться до Солнца

Можно ли добраться на ракете до горячей звезды? В принципе, долететь до Солнца для современного человека – не проблема.

Суть состоит в том, что после взлёта с Земли, аппарат должен замедлить свою скорость настолько, чтобы она стала меньше скорости движущейся по орбите Земли.

Сойдя с орбиты, аппарат начнёт притягиваться Солнцем, и по спирали падать на его поверхность. Стоит лишь помнить, что это путешествие – в один конец. Аппарат просто-напросто сгорит ещё на подлёте к Солнцу.

Но, если представить, что этого не случится, то путешествие на космическом корабле займёт около 7-8 месяцев. При таком огромном расстоянии, это не слишком длительный срок.

Световая секунда, световой год и другие космические единицы измерения

Используя кеплеровскую схему строения солнечной системы (Солнце в центре, планеты вращаются вокруг него), удобнее всего рассчитывать расстояния в пределах солнечной системы не от Земли, а от центра, то есть от Солнца. Но вот в каких единицах его отсчитывать?

  • Во-первых, его можно выражать в миллионах километров. Километр — это наиболее распространенная единица для измерения больших расстояний.
  • Во-вторых, чтобы избежать таких чисел, как миллионы километров, можно принять, что среднее расстояние от Земли до Солнца равно одной астрономической единице (сокращенно «а, е.») Тогда можно будет выражать расстояния в а, е., причем 1 а е. равна 149 500 000 км. С вполне достаточной точностью можно считать, что 1 а, е. равна 150 000 000 км.
  • В-третьих, расстояние можно выразить через время, которое потребуется для того, чтобы его преодолел свет (или любое аналогичное излучение, например радиоволны). Скорость света в пустоте равна 299 776 км/сек. Число это можно для удобства округлить до 300 000 км/сек.

Таким образом, расстояние примерно в 300 000 км можно считать равным одной световой секунде (ибо это расстояние, преодолеваемое светом за одну секунду). Расстояние, в 60 раз большее, или 18 000 000 км, — это одна световая минута, а расстояние, еще в 60 раз большее, т.е. 1 080 000 000 км, — это один световой час.

Мы не слишком ошибемся, если будем считать, что световой час равен одному миллиарду километров.

Запомнив это, рассмотрим те планеты, которые были известны древним, и приведем таблицу их средних расстояний от Солнца, выраженных в каждой из трех указанных единиц.

Планеты Среднее расстояние от Солнца
миллионов км астрономических единиц световых часов
Меркурий 57,9 0,387 0,0535
Венера 108,2 0,723 0,102
Земля 149,5 1,000 0,137
Марс 227,9 1.524 0,211
Юпитер 778,3 5,203 0,722
Сатурн 1428,0 9,539 1,321

Уильям Гершель – в свое время раздвинул горизонты познания, открыв Уран и буквально удвоив границы Солнечной системы

Солнечное ядро

Ядро — центральная часть Солнца. Экспериментальным путем установлено, что солнечное ядро по размеру составляет примерно 25 % от всего радиуса Солнца и состоит из сильно сжатого вещества. Масса ядра — почти половина от общей массы Солнца. Условия в сердцевине нашего светила экстремальные. Температура и давление достигают там максимальных показателей: температура ядра составляет примерно 14 млн К, а давление в нем достигает 250 млрд атм. Газ в солнечном ядре более чем в 150 раз плотнее воды. Это именно то место, где протекает термоядерная реакция, сопровождаемая выделением энергии. Водород превращается в гелий, а вместе с ним появляются свет и тепло, которые затем доходят до нашей планеты и дают ей жизнь.

На расстоянии от ядра более 30 % радиуса температура становится менее 5 млн градусов, поэтому ядерные реакции там уже почти не происходят.

Справедливо ли называть Солнце звездой?

Так что такое Солнце – это звезда или планета? Конечно же, это звезда. Об этом свидетельствует несколько важнейших характеристик!

  1. Оно не способно отражать свет, т. к. само его излучает и «даёт» окружающему пространству огромное количество энергетического потока.
  2. Его поверхность нагревается до внушительной температурной отметки, составляющей 5 500 – 6 000 градусов. Что касается ядерной части объекта, в ней дела обстоят ещё «горячее». Температура может составлять 15 млн градусов по Цельсию.
  3. Вокруг светила вращаются планеты в количестве 8 штук. Каждая из них имеет свою орбиту. Вместе все эти элементы образуют систему. Само по себе Солнце не имеет ни конкретной орбиты, ни спутников, что как раз характерно для звезды.
  4. Порядка 73% массы Солнца и около 92% его объёма представлено водородом – лёгким химическим элементов. На 25% от веса и 7% от объёма приходится гелий. И только 1% в составе объекта занимают другие элементы. Преимущественно это сера, хром, азот, железо и т. д.
  5. На поверхности нашей главной звезды постоянно происходят какие-то явления и реакции. Всё это провоцирует серьёзные энергетические выбросы. Именно данное явление позволяет наслаждаться дневным светом, а также получать от солнечных лучей большое количество тепла.
  6. Если принять Солнечную систему в качестве одного целого и определить доли всех шарообразных тел по их массам, на Солнце придётся порядка 99,86%. Отсюда следует простой и логичный вывод: наша звезда в 10 и даже в 100 раз превосходит в размерах многие планеты.

Таким образом, рассматривая вопрос, что такое Солнце – планета или звезда – можно незамедлительно дать ответ. Однозначно – это звезда. Она является жёлтым карликом в соответствии с общепринятой астрономической классификацией. Возраст светила в настоящее время превышает отметку в 5 млрд лет. По уровню яркости оно находится на 4-м месте среди всех изученных объектов такого типа. Теперь нет сомнений, к какой группе относится наш источник энергии!

Зона лучистого переноса

Зона лучистого переноса расположена у границы ядра. Предположительно она занимает около 70 % всего радиуса звезды и состоит из горячего вещества, через которое тепловая энергия передается от ядра к внешнему слою.

В результате термоядерной реакции, протекающей в солнечном ядре, образуются различные радиационные фотоны. Пройдя сквозь зону лучистого переноса и все последующие слои, они выбрасываются в космос и блуждают по там вместе с солнечным ветром, доходящим от Солнца до Земли всего за 8 минут. Ученым удалось установить, что на преодоление этой зоны фотонам требуется приблизительно 200 000 лет.

Зона лучистого переноса есть не только у Солнца, но и у других звезд. Ее величина и сила зависят от размера звезды.

Интересные факты о Солнце

  • Внутри Солнца можно поместить миллион Земель или планет, размером с нашу.
  • По форме Солнце образует практически идеальную сферу.
  • 8 минут и 20 секунд – именно за такое время солнечный луч добирается к нам из своего источника, при том, что Земля отдалена от Солнца на 150 млн. км.
  • Само слово «Солнце» происходит от древнеанглийского слова, означающее «юг» – «South».
  • И у нас для вас плохие новости, в будущем Солнце испепелит Землю, а потом и вовсе уничтожит. Произойдет это однако не раньше чем через 2 миллиарда лет.

Источники

  • https://KtoNaNovenkogo.ru/voprosy-i-otvety/solnce-chto-ehto-takoe-diametr-stroenie-skolko-let.html
  • https://CosmosPlanet.ru/solnechnayasistema/solnce/solntse-eto-zvezda-ili-planeta.html
  • https://www.poznavayka.org/astronomiya/solntse-unikalnaya-zvezda/
  • https://v-kosmose.com/solntse-interesnyie-faktyi-i-osobennosti/
  • https://CosmosPlanet.ru/solnechnayasistema/solnce/solntse.html
  • https://AwesomeWorld.ru/nezhivaya-priroda/solntse.html
  • http://light-science.ru/kosmos/solnechnaya-sistema/solntse.html
  • https://SunPlanets.info/solnechnaya-sistema/chto-takoe-solnechnaya-sistema-stroenie-planety-vozniknovenie-razvitie-otkrytie-i-izuchenie
  • http://light-science.ru/kosmos/solnechnaya-sistema/sostav.html

Как измерить расстояние до планеты?

В прошлом единственным методом измерения космических расстояний был метод горизонтального параллакса. Хотя этот метод достаточно точен и до сих пор применяется при расчете расстояния до очень далеких космических объектов, для измерения расстояний до планет-соседей по Солнечной системе, с середины 20-го века применяется более простой и ещё более точный способ – метод радиолокации.

В основе методики космической радиолокации лежит идея заимствованная у самой природы: достаточно просто найти на небесной сфере нужный объект (например, планету Венера), “прицелится” в неё и затем “выстрелить” радиоволнами сверхкороткого диапазона. Теперь нам остается только дождаться когда сигнал достигнет поверхности Венеры, отразится от неё и устремится обратно.

Скорость распространения радиоволн точно известна, а время между посылкой волн и их приемом также может быть измерено очень точно. Расстояние, покрытое радиоволнами за время путешествия туда и обратно, а следовательно, и расстояние до Венеры в заданный момент можно определить с несравненно большей точностью, чем методом параллаксов.

Начиная с 1961 г. года этот способ измерения близких космических расстояний стал основным. С помощью полученных данных было вычислено, что среднее расстояние от Земли до Солнца составляет 149 573 000 км.

Радиотелескопы без перерыва «сканируют» космос и ловят «эхо» своих сигналов отраженное от космических объектов

История исследований Солнца — для детей

Ребятам будет интересно узнать как можно больше информации про Солнце, потому что это единственная звезда Солнечной системы, от которой зависит жизнь на нашей планете. Поэтому изучение Солнца проводят до сих пор. Необходимо объяснить детям, что еще древние люди понимали, какую важную роль играют в нашем существовании Солнце и Луна. Из-за этого нашли множество наскальных рисунков, а также памятников, которые отображали движение небесных тел. Тогда многие свято верили, что именно Солнце вращается вокруг нас. В 150 г. до н. э. появилась даже геоцентрическая модель, созданная Птолемеем – ученым из Древней Греции. Но Николай Коперник рассмотрел эту теорию и в 1543 году предложил гелиоцентрическую модель (Солнце служило центральной точкой). И в 1610 году его мысли подтвердились, так как Галилео Галилей обнаружил спутники Юпитера, демонстрируя, что мы не являемся центром, так как не все вокруг оборачиваются вокруг нас.

Конечно, человечеству всегда хотелось узнать больше о работе главной звезды. Поэтому они начали использовать ракеты и телескопы с Земли. НАСА отправило 8 орбитальных обсерваторий, которые представляли собою Орбитальную солнечную обсерваторию (1962-1971 гг). Успеха добились 7 из них. Именно им удалось проанализировать звезду в ультрафиолетовых и рентгеновских длинах волн. Кроме того, были рассмотрены снимки супергорячей короны.

НАСА и Европейское космическое агентство решили объединиться и отправили аппарат Улисс в 1990 году, который должен был исследовать полярные районы. Интересно, что аппарату НАСА Genesis удалось добыть образцы солнечного ветра. Первые фото Солнца в 3D были получены в 2007 году от STEREO НАСА (изучение активности Солнца).

На этой серии снимков, сделанных космическим аппаратом SOHO, показана траектория движения кометы, обогнувшей Солнце

Если выбирать по важности, то сейчас первенство отведено Солнечной и гелиосферной обсерватории (SOHO). Ее специально создали, чтобы изучать солнечный ветер

Кроме того, в список интересующих вопросов входят внешние и внутренние слоя звезды. Обсерватории удалось найти корональные волны, измерить ускорение ветра, отобразить карту пятен на подповерхностном уровне, отыскать солнечные торнадо, более 1000 комет, а также улучшить умение прогнозировать погодные условия на Земле.

Следует также вспомнить, что Обсерватория солнечной динамики (SDO) НАСА получила сведения о неизвестном материале, вытекающем недалеко от солнечных пятен, а также разглядеть удивительные и масштабные поверхностные события. Кроме того, с ее помощью ученые смогли впервые измерить в высоком разрешении вспышки в широком диапазоне экстремальных длин волн ультрафиолетового излучения.

Помните, что рассказ о Солнце должен увлечь ребенка, поэтому воспользуйтесь фото и рисунками сайта, а также интересными фактами о звезде. Здесь вы сможете изучить всю Солнечную систему в увлекательной форме совершенно бесплатно.

Планеты

Радиус Солнца

Этот радиус по существу такой же, если измерить его от центра до экватора, или от центра до солнечных полюсов. Но вам нужно быть осторожными с другими объектами, тем не менее, потому что скорость их вращения влияет на радиус.

Солнцу требуется около 25 дней на оборот вокруг своей оси. Так как оно вращается относительно медленно, Солнце совсем не сплюснуто. Расстояние от центра до полюсов почти такого же размера, как расстояние от центра до экватора.

Где-то там есть звезды, которые отличаются значительно. Например, звезда Achernar, расположенная в созвездии Eridanus, сплюснута до 50%. Другими словами расстояние от полюсов — это половина расстояния от экватора. В такой ситуации звезда фактически выглядит как игрушка волчок.

Поэтому относительно звезд там, Солнце почти превосходная сфера.

Астрономы используют радиус Солнца, чтобы сравнивать размеры звезд и других астрономических объектов. Например, звезда с 2 солнечными радиусами в дважды больше Солнца. Звезда с 10 солнечными радиусами в 10 раз больше Солнца, и так далее.

VY Canis Majoris. Самая большая известная звезда.

Полярная Звезда (Polaris), Северная Звезда — самая большая звезда в созвездии Малая Медведица (Ursa Minor), и из-за близости к северному астрономическому полюсу ее считают текущей северной полярной звездой. Полярная Звезда прежде всего используется для навигации и имеет солнечный радиус 30. Что означает, она в 30 раз больше Солнца.

Сириус (Sirius), который является самой яркой звездой в ночном небе. В плане видимой звездной величины, вторая самая яркая звезда Canopus имеет только половину размера Сириуса. Неудивительно, что действительно выделяется. Сириус на самом деле бинарная звездная система со звездой Sirius A, имеющей солнечный радиус 1.711, и Sirius B, которая намного меньше, в 0.0084.

Эволюция Солнца и его будущее

Ученые считают, что возраст нашего светила составляет 4,57 миллиарда лет. В то далекое время оно образовалось из части молекулярного облака, представленного гелием и водородом.

Как родилось Солнце? Согласно одной из гипотез гелиево-водородное молекулярное облако из-за углового момента запустило вращение и одновременно начало интенсивно нагреваться по мере роста внутреннего давления. При этом большая часть массы сконцентрировалась в центре, и превратилась собственно в Солнце. Сильная гравитация и давление привели к росту тепла и ядерному синтезу, благодаря которому работает, как Солнце, так и другие звезды.

Так выглядит эволюция звезды, в том числе и Солнца. Согласно этой схеме в данный момент наше Солнце находится в фазе маленькой звезды, и текущий солнечный возраст составляет середину этой фазе. Примерно через 4 миллиарда лет Солнце превратится в красного гиганта, еще больше расширится и уничтожит Меркурий, Венеру, и возможно нашу Землю. Если же Земля как планета все-таки и уцелеет, то жизнь на ней к тому времени все равно уже будет невозможна. Так как уже через 2 миллиарда лет свечение Солнца увеличится настолько, что все земные океаны попросту выкипят, Земля будет испепелена и превратится в сплошную пустыню, температура на земной поверхности будет составлять 70 С и если будет возможна жизнь, то только глубоко под землей. Поэтому имеем еще примерно миллиард с хвостиком лет, чтобы найти новое убежище для человечества в очень отдаленном будущем.

Но вернемся к Солнцу, превратившись в красного гиганта, оно пробудет в таком состоянии примерно 120 миллионов лет, затем начнется процесс уменьшения его размера и температуры. И когда остатки гелия в его ядре будут сожжены в постоянной топке термоядерных реакций, Солнце потеряет свою стабильность и взорвется, превратившись в планетарную туманность. Земля на этой стадии, как впрочем, и соседний Марс, с большой вероятностью будут уничтожены солнечным взрывом.

Еще через 500 миллионов лет из солнечной туманности образуется белый карлик, который просуществует еще триллионы лет.

Своенравное Солнце

Горячие споры по поводу изобилия кислорода и других тяжёлых элементов в составе Солнца начались совершенно случайно. В конце 1990-х годов Асплунд хотел подробнее изучить древние звёзды, которые содержали очень мало подобных элементов. Однако сначала он счёл целесообразным выяснить состав нашего светила чуточку получше.

Для этого он и его коллеги разработали новые модели, анализирующие солнечный спектр — радугу цветов, которую испускает наша звезда. Атомы разных элементов поглощают свет волн различной длины, создавая так называемые спектральные линии. Чем больше атомов определённого элемента существует на поверхности Солнца, тем больше света они поглощают и тем более выражены вышеобозначенные линии. Таким образом, эти атомы способны показать относительное содержание элемента по сравнению с водородом, который является основным «ингредиентом» нашего светила.

Поскольку Солнце считается точкой отсчёта, учёные могут образно видеть всю Вселенную в одном его луче: анализируя солнечный спектр, они могут определить пропорции водорода, углерода, азота и кислорода во всём космосе.Новые модели Асплунда были намного сложнее работ его предшественников, и в них не допускались упрощения и приближения. «Я не ожидал, что это вообще изменит соотношение элементов в составе Солнца, — говорит он. – Это произошло совершенно случайно».

Солнечный спектр (показанный на изображении) можно проанализировать и выявить ключ к разгадке состава Солнца. Атомы на его поверхности поглощают определённые цвета, оставляя тёмные спектральные линии в наблюдаемом диапазоне. Именно они и говорят о пропорциях этого элемента в составе нашего светила. Линии H и K тёмно-фиолетового цвета возникают из-за кальция; пара жёлто-оранжевых D-линий от натрия; и красная линия C от водорода. Однако, спектральные линии кислорода трудно анализировать.

В его моделях каждый из четырёх самых распространённых тяжёлых элементов во Вселенной «потерял в весе». По сравнению с цифрами, опубликованными двадцатью годами ранее, в статье Асплунда и его коллег за 2009-й год рекомендовалось резко снизить количественную оценку этих элементов. Новые модели понизили предполагаемый уровень кислорода в составе Солнца (и, следовательно, во всей Вселенной) на целых 42 процента. Углерод – ещё один химический элемент, необходимый для формирования жизниснизился на 26 процентов, в то время как уровни неона и азота упали на 31 и 40 процентов соответственно.

По всем расчётам, эти четыре элемента составляют подавляющее большинство (88 процентов в работе Асплунда, в других исследованиях немного больше) всех тяжёлых атомов во Вселенной. И если Асплунд был прав, их количество значительно меньше, чем кто-либо думал. А это означало огромные проблемы для моделей, описывающих внутреннее строение нашего светила.

Внутренняя структура и атмосфера Солнца — для детей

Следует объяснить для самых маленьких, что у любого объекта можно выделить определенные зоны. Внутренняя часть представлена ядром, радиационным и конвективным уровнями. Картинка Солнца для детей предоставляет схему состава и строения звезды.

1/4 дистанции от центра к верхней части достается ядру. При, казалось бы, небольшом объеме (всего 2% от солнечного), оно в 15 раз превышает свинцовую плотность и занимает практически половину всей звездной массы. От ядра и до поверхности (70%) расположена радиационная зона (32% объема и 48% массы). Здесь распадается свет из ядра, так что дети должны знать, что фотону могут понадобиться миллионы лет, чтобы выбраться из этого участка.

Далее к поверхности подбирается конвекционный слой (66% объема и 2% массы). Здесь можно разглядеть множество «конвекционных ячеек» с вращающимся внутри газом. Можно выделить два главных типа: грануляционные (ширина 1000 км) и супергрануляционные (30000 км в диаметре).

Ребенку будет интересно узнать, что в атмосферу входят фотосфера, хромосфера, переходный участок и корона. Кроме всего прочего, есть также и солнечные ветра, выдувающие газ из короны.

На наиболее низком слое расположилась фотосфера. Свет, излучаемый ею, мы воспринимаем как привычные солнечные лучи. При толщине в 500 км значительная порция света приходит из самой низкой части слоя. Здесь температура может варьироваться от 6125°C внизу до 4125 °C вверху.

После нее идет хромосфера. Она намного раскаленнее (19725°C) и полностью состоит из заостренных формирований, достигающих 1000 км в длину и 10000 км в высоту. Далее на несколько тысяч километров расположилась переходная полоса. Корона нагревает ее и также сбрасывает большую часть ультрафиолетовых лучей.

Выше размещена супергорячая корона, состоящая из петель и потоков ионизированного газа. Ее температура достигает от полмиллиона до 6 миллионов градусов (иногда и превышает эту отметку, доходя до нескольких десятков, если случается вспышка). На короне есть вещество, которое распространяется в форме солнечных ветров.

Заключение

Оценивая полученные на сегодняшний день данные о Солнце, нельзя утверждать, что мы досконально знаем природу нашей звезды. Все представления о строении и структуре Солнца держатся на математических и физических моделях, созданных человеком. Анализ процессов, происходящих внутри нашей звезды и на ее поверхности, позволяет найти объяснение тем процессам и явлениям, которые происходят на нашей планете. Солнце является не только генератором энергии, обогревающим нашу планету, но и самым мощным источником радиоизлучения и электромагнитных волн, которые воздействуют на биосферу Земли. Любое изменение активности Солнца мгновенно отражается на состоянии земного климата и нашем самочувствии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector