Авиа двигатели. типы двигателей используемых в авиастроении

Классификация самолетов с учетом конструктивных особенностей по И.Г. Житомирскому.

С учетом аэродинамической схемы:

  • Нормальная схема строения.

  • «Бесхвостка» – самолеты, выполненные в этой схеме аэродинамики, не имеют некоторых плоскостей на горизонтальном управлении. Управление осуществляют хвостовые плоскости.

  • «Утка» – в этой схеме продольные органы управления находятся в передней части крыла.

  • Конвертируемая – наиболее ярким представителем этого типа является самолет Ту-144.

  • Тандем – летательный аппарат, имеющий два крыла, которые расположены друг за другом.

  • Продольный триплан – хвостовое оперение горизонтального типа, а остальное – переходного типа.

В зависимости от расположения крыла

По количеству установленных крыльев:

  • Полиплан.

  • Триплан – самолеты оснащены тремя крыльями.

  • Полутораплан – нижнее крыло значительно короче, чем верхнее.

  • Биплан – самолет с двумя крыльями, которые в большинстве случаев расположены один над другим.

  • Моноплан – самолеты с одной несущей поверхностью.

По типу расположения крыльев (монопланы):

  • Парасоль.

  • Среднеплан.

  • Высокоплан.

  • Низкоплан.

  • Чайка.

Набор внешней части крыла (моноплан):

  • Расчалочный моноплан.

  • Свободнонесущий.

  • Подносный моноплан.

Набор внешней части крыла (полипланы):

  • Подкосной.

  • Подкосно-стоечный.

  • Стоечный.

  • Свободнонесущий.

  • Расчалочно-стоечный.

В зависимости от формы крыльев:

  • Круглое.

  • Прямоугольное.

  • Параболическое.

  • Эллиптическое.

  • Треугольное.

  • Трапециевидное.

  • Кольцевое.

  • Овальное

В зависимости от типа стреловидности крыльев:

  • Прямое с углом стреловидности в 0 градусов.

  • Обратной стреловидности.

  • Изменяемой стреловидности во время осуществления полета.

  • Прямой стреловидности.

  • Переменной стреловидности.

Особый тип строения крыла:

Арочное – использовалось для самолета конструктора Антонова, который обозначался как «Изделие 181».

На пути к импортонезависимости

ПД-8 и ПД-35 разрабатываются на базе первого полностью российского турбовентиляторного двигателя ПД-14, которым будет оснащаться парк пассажирских самолётов МС-21. Первый полёт с этой силовой установкой одна из модификаций лайнера (МС-21-310) должна совершить до конца 2020 года.

Ранее для МС-21 закупались агрегаты PW1400G американской компании Pratt & Whitney. Как отмечают эксперты, в условиях санкционного режима создание ПД-14 позволяет России не зависеть от Запада в поставках своих самолётов отечественным и зарубежным заказчикам.

  • Российский лайнер МС-21 с отечественными агрегатами ПД-14

Проект ПД-14 был запущен в рамках программы по созданию двигателей тягой от 9 до 18 т. По информации «Ростеха», российские специалисты создавали этот агрегат «на основе проверенных временем конструкторских решений» с применением современных отечественных технологий и материалов.

«Конструкторами было разработано и внедрено 16 ключевых технологий, например лопатки турбины из легчайшего интерметаллида титана или продвинутая система охлаждения, позволяющая турбине работать при температуре до 2000 °К (1726,85 °C. — RT)», — говорится в материалах корпорации.

Появление ПД-14 открыло для России технологическую возможность изготавливать высокоэффективные двигатели различной мощности. Один из них — ПД-8 тягой в 8 т, работы над которым должны быть завершены в 2022 году.

Такой агрегат необходим для оснащения узкофюзеляжных пассажирских лайнеров Ан-148 и SSJ-100, а также самолёта-амфибии Бе-200ЧС. В настоящее время Sukhoi Superjet 100 летает на российско-французском SaM146, Ан-148 и Бе-200 — на Д-436 производства запорожской компании «Мотор-Сич».

Также по теме


«Решение масштабных задач»: как Россия планирует замещать зарубежные авиационные двигатели

В России появилось конструкторское бюро по созданию новых двигателей для самолётов и БПЛА. Его костяк составили учёные Самарского…

В 2018 году Таганрогский авиационный научно-технический комплекс им. Г.М. Бериева объявил о ремоторизации парка Бе-200, которая предполагает замену украинских агрегатов на SaM146.

Тем не менее, как отмечают в «Ростехе» и «Объединённой авиастроительной корпорации» (ОАК), в перспективе российские амфибии и SSJ-100 всё же будут оснащаться ПД-8. Кроме того, технологическая база этого агрегата позволяет устанавливать его и на вертолёты.

«Сейчас есть надежда, что мы двигатель (ПД-8. — RT) получим в 2022 году. В 2023 году пройдём в первую очередь на SSJ-100, и дальше на самолёте Бе-200 мы достигнем абсолютно 100%-ной импортонезависимости от Украины», — рассказал журналистам глава ОАК Юрий Слюсарь в октябре на полях «Гидроавиасалона-2020».

Из технического задания по проекту ПД-8, которое размещено на сайте госзакупок, следует, что крейсерская скорость самолёта, оснащённого этим агрегатом, составит 0,78—0,82 чисел Маха, максимальное время полёта — до 10 часов, температурный диапазон работы на земле — от -55 °С до +55 °С. Конструкция двигателя должна позволять носителю подниматься на высоту до 14 км.

ПД-8 получит цифровую электронную систему автоматического управления и будет соответствовать нормам Международной организации гражданской авиации (ICAO) по шуму и эмиссии вредных веществ.

Ещё одной важной особенностью ПД-8 станет система электропитания и коммутации агрегатов СЭПК-8, к которой предъявляются жёсткие требования по вибрации и взрывозащите. Её созданием занимается холдинг «Технодинамика»

  • Сборка авиационного двигателя

«Считаю, что эта силовая установка будет востребована на отечественном авиационном рынке, поскольку имеет широкий спектр применения на региональных самолётах, а также применяться в перспективных вертолётах. Кроме того, уверен, что полученные компетенции при разработке систем для ПД-8 и ПД-14 помогут нам в аналогичных работах для авиадвигателя ПД-35», — заявил ранее генеральный директор холдинга «Технодинамика» Игорь Насенков.

«Достаточно скоро мы должны увидеть и первые результаты работ по ПД-8. Его появление позволит России производить и продвигать заказчикам самолёты-амфибии без оглядки на Украину, а также сократить долю импортных комплектующих в SSJ-100», — сказал Пантелеев.

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

«Выигрыш может оказаться большим»

В интервью RT на полях МАКС-2019 начальник отдела электрических силовых установок ЦИАМ Антон Варюхин заявил, что «выигрыш от гибридизации может оказаться большим». Впрочем, от отметил, что существенный положительный эффект для авиационной отрасли станет заметен только с появлением изделий мощностью в несколько мегаватт (МВт) и более. Тем не менее, как полагает инженер, на некоторые типы воздушных судов уже сейчас можно устанавливать гибридные и электрические двигатели.

«Прежде всего это лёгкие учебные самолёты. В будущем электродвигателем может быть оснащён, например, Ил-114-300, производство которого сейчас разворачивается. Для этого как раз необходимо достичь мощности в 2 МВт», — сказал Варюхин.

  • Элементы авиационного двигателя на испытаниях

Владимир Попов также считает вопрос мощности ключевой преградой для распространения авиационных двигателей, работающих полностью или частично на электрической энергии. Однако, по прогнозу эксперта, в ближайшие годы отечественным специалистам удастся разработать аккумуляторы, которые позволят выпускать летательные аппараты на ГСУ и электромоторах. 

В комментарии RT исполнительный директор агентства «Авиапорт» Олег Пантелеев заявил, что уже сегодня уровень развития российской и зарубежной авиаотрасли позволяет производить самолёты с ГСУ вместимостью свыше десяти пассажиров. Дальность полёта зависит от ёмкости аккумуляторов и относительно невелика — не более 1 тыс. км.

Также по теме


«Новая парадигма развития»: как цифровые двойники изменят авиационную отрасль России

В 2024 году в России планируется завершить научно-исследовательские работы по внедрению технологии цифровых двойников авиационных…

«То направление, по которому идут российские учёные и инженеры, имеет хорошие перспективы. Я имею в виду использование эффекта высокотемпературной сверхпроводимости, значительно повышающего КПД электрического двигателя и дальность полёта при сохранении прежних показателей ёмкости аккумуляторных батарей», — утверждает Пантелеев. 

Как рассказал аналитик, помимо небольших самолётов, сейчас на электрической тяге могут подниматься в воздух лёгкие вертолёты и БПЛА различного типа. Однако Пантелеев подчеркнул, что на сегодняшний день не приходится говорить о востребованности таких летательных аппаратов в коммерческих перевозках из-за их слабых технических характеристик и высокой стоимости производства.

«До коммерческих образцов пока далековато. Необходимо решить самые разные проблемы, например найти эффективный способ охлаждения электромоторов, которые при работе на максимальных режимах выделяют большое количество тепловой энергии. Тем не менее процесс идёт в правильном направлении. Это видно по российскому проекту ГСУ мощностью 500 кВт. Если он будет реализован, то появится база, необходимая для создания новых транспортных и пассажирских самолётов», — резюмировал Пантелеев. 

Конструктивные особенности поршневых двигателей

Авиационные поршневые двигатели имеют большое число цилиндров (от 5 до 24), хорошие экономические характеристики, способны работать в перевёрнутом состоянии и обладают большей надёжностью.

Способ охлаждения – воздушное, или жидкостное — определяет конструкцию двигателя.

В двигателях с жидкостным охлаждением цилиндры объединяют по 4-6 штук в блоки (ряды), они имеют общую рубашку, внутри которой циркулирует охлаждающая жидкость. В одном двигателе может быть несколько (2, 4 или 6) блоков, размещаемых вдоль оси двигателя.

В двигателях с воздушным охлаждением цилиндры располагают в плоскости, перпендикулярной оси двигателя, по 5-9 штук; вместе эти цилиндры напоминают звезду. У мощных двигателей могло быть до четырех звёзд (до 20-24 цилиндров). Цилиндры охлаждаются потоком встречного воздуха, для более эффективного охлаждения наружная поверхность корпусов цилиндров делается ребристой.

Помимо звездообразных двигателей, нашли свое применение в авиастроении и оппозитные двигатели[]. Их часто устанавливают на легкие и небольшие самолеты, так как их мощности вполне достаточно для полета на высоких скоростях.

Оппозитный поршневой двигатель П-020

К 1942 году поршневые моторы практически исчерпали свои возможности. Пропеллеры по своей конструкции так же достигли высшей точки эффективности.[] Увеличение числа цилиндров, применение нагнетателей, сложных систем впрыска воды, спирта или химикатов в топливо усложняло конструкцию и давало лишь небольшой эффект.

***

Одним из наиболее удивительных поршневых авиадвигателей, изготовленных во время Второй мировой войны, был американской опытный звездообразный двигатель жидкостного охлаждения «Райт R-2160 Торнадо», в котором 42 цилиндра располагались в семь рядов в шести радиальных блоках. По замыслу конструкторов, «Торнадо», имевший небольшой диаметр, позволял авиаконструкторам разрабатывать фюзеляжи с небольшим поперечным сечением.

Однако «Торнадо» требовалась довольно тяжелая и сложная система радиаторов охлаждающей жидкости, которая сводила на нет любое аэродинамическое преимущество от малого поперечного сечения двигателя.

Котельников В. Р., Хробыстова О. В., Зрелов В. А., Пономарёв В. А. Двигатели боевых самолетов России /Под общ. ред. В. В. Горошникова. — Рыбинск : Медиарост, 2017. -616 с.: илл.

  1. Jean Joseph Etienne Lenoir (1822-1900). []
  2. В настоящее время — Запорожье. []
  3. Лидером в разработке авиационных двигателей с жидкостным охлаждением была Германия []
  4. В постройке двигателей с воздушным охлаждением лидером была Франция []
  5. Поршневой ДВС, в котором угол между рядами цилиндров составляет 180 градусов, а противостоящие поршни двигаются зеркально по отношению друг к другу и одновременно достигают верхней мёртвой точки. []
  6. Пропеллер, или винт проектируется под конкретный двигатель. []

Классификация поршневых авиадвигателей

Авиационные поршневые двигатели могут быть классифицированы по различным признакам.

В зависимости от рода применяемого топлива — на двигатели легкого или тяжелого топлива.

По способу смесеобразования — на двигатели с внешним смесеобразованием (карбюраторные) и с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).

В зависимости от способа воспламенения смеси — на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.

В зависимости от числа тактов — на двухтактные и четырехтактные.

В зависимости от способа охлаждения — на двигатели жидкостного и воздушного охлаждения.

По числу цилиндров — на четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т. д.

В зависимости от расположения цилиндров — на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели, в свою очередь, подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные. Звездообразные двигатели также бывают однорядные, двухрядные и многорядные.

По характеру изменения мощности в зависимости от изменения высоты двигатели подразделяются на высотные, то есть сохраняющие мощность с подъемом самолета на высоту, и невысотные, мощность которых падает с увеличением высоты полета.

По способу привода воздушного винта — на двигатели с прямой передачей на винт и редукторные двигатели.

Поршневые двигатели работают по циклу периодического действия.

В 1909 году Луисом и Лораном Сеген был создан ротативный двигатель «Гном», получивший широкое распространение и применение самолётах времён Первой мировой войны.

В этом звездообразном двигателе вокруг неподвижного коленчатого вала вращался блок цилиндров.

Преимущества ротативных авиадвигателей: в таких двигателях нет необходимости в установке противовесов. Цилиндры постоянно находятся в движении, что создает хорошее воздушное охлаждение. Можно отказаться от применения маховика, т. к. вращающиеся цилиндры и поршни создают вращающийся момент.

Недостатки: отнести плохое маневрирование самолёта, обусловленное гироскопическим эффектом, создаваемым большой вращающейся массой двигателя, а также плохую систему смазки, поскольку инерционные силы заставляют смазочное масло скапливаться на периферии двигателя. Масло приходилось смешивать с топливом для обеспечения надлежащего смазочного эффекта.

Такая конструкция была проще, но самолеты возвращались из полета покрытые толстым слоем касторового масла, которое во время работы такого двигателя разлеталось от вращающегося блока, щедро разбрасывая капли даже на лётчиков. К тому же на вращающиеся цилиндры действовали большие инерционные нагрузки.

Более поздние двигатели содержали привычный неподвижный блок цилиндров и вращающийся коленчатый вал. Но радиальное расположение имело и свои недостатки: высокое лобовое сопротивление и сложность обслуживания двигателя.

Основные типы поршневых двигателей

В истории авиации мотор никогда не был так популярен, как самолёт: широко известны, например, самолёты Первой мировой войны «Фоккер D-7», «СПАД 13», «Бристоль F.2B», но редко слышно о 185-сильном двигателе БМВ, 235-сильном «Испано-Сюиза», 275-сильном «Фалькон» («Роллс-Ройс»). Хотя без надёжного двигателя удачный самолёт не построишь — всё начиналось с мотора.

В 1918 году французский изобретатель Ратье предложил турбонагнетатель.

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

https://youtube.com/watch?v=Am6y8xNZ3lU

Мотор М-17 (BMW-VI)

Основным авиадвигателем этого времени (1931–1934) в советской авиации стал немецкий лицен­зионный 12-цилиндровый V-образный мотор М-17 (BMW-VI) мощностью 680 л.с., произ­во­див­шийся в Рыбинске на заводе № 26.


  

Этот завод — старейший в российском авиапроме. Он был основан по указу Николая II во время Первой мировой войны (в 1916 г.) в тылу как один из пяти автомобильных заводов (филиал петер­бургского завода «Русский Рено»). А в 1924 г. завод, к тому времени закрытый из-за кризиса, был взят на баланс передачей из автопрома в авиапром и получил обозначение как ГАЗ (Госу­дар­ственный авиационный завод) № 6 (с 1928 г. — № 26).

В 1927 г. в СССР в связи с военной угрозой после разрыва дипотношений с Англией стали концен­трировать оборонную промышленность под единым государственным управлением. Ситуация с производством военного снаряжения в то время была катастрофическая. Так, мощность авиа­ци­он­ных заводов в 1927 г. составляла только 15 % французского авиапрома. В техническом плане отставание было еще больше: ни мощных моторов, ни современных разработок самолетов не было. Появился и мобилизационный план (С-30) на случай войны и на его основе сформированы задания на строительство и оснащение современным импортным оборудованием оборонных заводов. Эти задания и вошли в план Первой пятилетки. Было выделено 56 действующих заводов военно-промышленного комплекса и им присвоены порядковые номера. Заводы стали «номерные», как тогда говорили, в документах же они именовались «кадровыми». Символично, что номер «первый» получил именно авиационный завод (им. Авиахима у метро «Динамо»).

В 1928 г. оборонные заводы были объединены в шесть трестов (типа сегодняшних холдингов), работающих на хозрасчете, т. е. заводы работали уже достаточно экономически эффективно. Координация была возложена на Главное управление военной промышленности (ГУВП) ВСНХ (Высший Совет народного хозяйства). В авиатресте в это время было 11 авиационных заводов. Но тресты просуществовали недолго — в 1932 г. «кадровые» заводы передаются в Нарком­тяжпром, в котором организуется авиационный главк (главное управление), объединяющий 17 заводов.

В 1935 году подвели первые итоги: основные моторные заводы (№ 24 в Москве — 15 тыс. моторов/год; № 19 в Перми — 6 тыс. моторов/год; № 26 в Рыбинске — 10 тыс. моторов/год; № 29 в Запо­рожье — 5 тыс. моторов/год; № 16 в Воронеже — 16 тыс. маломощных моторов М-11 /год; новый завод в Казани № 27 — 6 тыс. моторов/год) модернизированы и построены. В СССР появилась современная авиамоторная промышленность, планировалось к 1939 г. нарастить суммар­ную мощность авиамоторных заводов до 57 тыс. штук в год.

В 1936 г. в связи с расширением объема производства из Наркомтяжпрома выделяют Наркомат оборонной промышленности, а в 1939 г. по той же причине из него Наркомат авиационной промышленности, ставший самым крупным подразделением оборонной промышленности. В него входило 86 заводов, 9 НИИ и КБ, 5 стройтрестов, 7 институтов и 15 техникумов. По объему выпускаемого валового продукта, численности работающих и объему капитального строительства Наркомат авиационной промышленности составлял 30 % всей оборонной промышленности.

Еще в 1927 г., пользуясь только что (1926 г.) подписанным договором с Германией, в Мюнхен на стажировку выезжает группа специалистов завода, а в октябре того же года подписывается договор об оказании технической помощи заводу со стороны Баварских моторных заводов (БМВ), включая покупку лицензии на производство мотора BMW-VI, или, по советской классификации, М-17. Этот мотор производился с небольшими модификациями десять лет — с 1928 по 1938 г. Первые два года мотор собирался в Рыбинске из немецких комплектов деталей, а с 1930 г. — полностью отече­ст­вен­ного производства. Всего было выпущено 8 тыс. моторов. Этот мотор стоял тогда на всех основных типах советских самолетов: поликарповском биплане Р-5, морском ближнем разведчике Григо­ро­вича МБР-2, туполевских бомбардировщиках ТБ-1 и ТБ-3.

Вообще в начале 1930-х гг. старую инженерную школу МВТУ в авиации потеснили более энергич­ные и имевшие связи наверху военные — выпускники ВВИА им. Жуковского. Нельзя сказать, что это дало положительные результаты — фундаментальная подготовка этих двух инже­нер­ных школ сильно отличалась не в пользу военных, а амбиции у последних были большие. Собственно же авиационная инженерная школа только начала создаваться — в 1928 г. от МВТУ отпочковалось ВАМУ (Высшее Аэро-Механическое училище, позже, с 1929 г., ставшее Московским авиационным институтом).

Двигатели М-85, М-100 и М-25

Еще до решения о закупке лицензий разворачиваются строительные работы по расширению и возведению заводов с нулевого цикла для серийного производства современных авиамоторов в Запорожье («Гном-Рон»), Рыбинске («Испано-Сюиза») и Перми (вначале планировалось произ­вод­ство мотора М-22, т. е. лицензионного мотора воздушного охлаждения фирмы «Гном-Рон», а затем было принято решение о договоре с «Кертис-Райт».

Во Францию выезжает В. Я. Климов, а в США — будущий директор Пермского завода, крупный организатор Авиапрома И. И. Побережский и технический директор А. Д. Швецов для принятия решения о закупке лицензий и технологий. Выбраны три самых современных двигателя: 14-цилиндровая двухрядная звезда воздушного охлаждения «Мистраль-Мажор» мощностью 725 л.с. («Гном-Рон»), классический 12-цилиндровый V-образный двигатель жидкостного охлаждения HS-12Y («Испано-Сюиза») и 9-цилиндровая однорядная звезда воздушного охлаждения «Циклон» («Кертис-Райт») мощностью 635 л.с. Соответственно конструкторское сопровождение произ­водства этих двигателей, получивших традиционную маркировку «М», и их дальнейшую модификацию на новых заводах осуществляют Назаров А. С. (Запорожье, завод № 29), Климов В. Я. (Рыбинск, завод № 26) и Швецов А. Д. (Пермь, завод № 19). Соответственно советские аналоги лицензионных моторов получают индексы М-85, М-100, М-25. Так сформировались основные моторные школы в СССР.

M-25 — авиационный двигатель, выпускавшийся в СССР в 1930-е и 40-е годы по лицензии на американский двигатель Wright «Cyclone» R-1820

Советская копия двигателя Gnome-Rhone «Mistral Major» 14Kdrs соответствовала оригиналу по мощности и расходу топлива, но отличалась большим расходом масла и имела меньший срок межремонтного ресурса.


 

Поршневой авиационный двигатель M-100 (Hispano-Suiza 12YBbrs)

Список источников:

  • Валерий Августинович. Битва за скорость. Великая война моторов.
  • В. Р. Котельников. Поршневые моторы А.А.Микулина. Отечественные авиационные поршневые моторы.
  • Л. Берне, В. Перов. Александр Микулин: человек-легенда.
  • Л. Берне. Создатель трёх ОКБ.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector