Водородная и атомная бомбы: сравнительные характеристики
Содержание:
- Последствия использования
- Основное по конструкции и физическим свойствам заряда
- Как они образуются.
- Примечания
- «Касл Браво»
- Ядерная зима
- Ядерные боеприпасы
- Немного истории
- Техническое задание
- Что такое атомная бомба?
- Современные опасности
- Что такое атомная бомба?
- Ядерная зима
- Браво
- Атомная бомба
- Ударная волна и тепловой эффект.
Последствия использования
Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.
Последствия использования
Основное по конструкции и физическим свойствам заряда
Как «Кузькина мать» бомба не являлась просто переименованным изделием проекта РН202. В конструкцию бомбы был внесён ряд важных изменений, в частности, затронувших её центровку. Для обеспечения безопасности экипажа самолёта-носителя авиабомба АН602 была оборудована тремя парашютами: вытяжным, тормозным и основным. Общий вес парашютной системы составил 813 кг.
Схема действия каждой из ступеней строилась следующим образом:
- Первая ступень — атомный взрыв, запускающий термоядерную реакцию;
- Вторая ступень — термоядерный взрыв при синтезе дейтерия;
- Третья ступень — запуск ядерной реакции Джекилла-Хайда под действием быстрых нейтронов в оболочке из блоков урана-238.
Согласно расчётам советских физиков-ядерщиков, максимальная мощность подобного взрывного устройство теоретически была неограниченной. В пределах произведённых расчётов для практической реализации на заданном типе конструкции мощность взрыва составляла около 100 мегатонн, хотя могла быть без особых дополнений повышена в несколько раз.
В подготовленном к «рекордному» испытанию экземпляре «Царь-бомбы» было решено не поднимать мощность взрыва до максимальных расчётных показателей. В связи с этим третья ступень бомбы при её окончательном изготовлении состояла из свинца, а не из урана-238, как предполагалось в штатном взрывном устройстве.
Такая замена материала оболочки приводила к общему понижению мощности взрыва, что объяснялось желанием сократить до приемлемого уровня количество выбрасываемых при взрыве радиоактивных осадков. На уменьшении веса бомбы это особо не сказалось: если урановая оболочка 100-мегатонной бомбы должна была весить 2,8 тонны, то свинцовая же оболочка того же объёма — около 1,7 тонны, что на фоне общей массе АН602 было незначительным.
Вес и длина
Параметры | Значения |
Длина (без учёта штырей взрывателей) | 8000 мм |
Диаметр | 2100 мм |
Масса бомбы | 26 413 кг |
Масса вместе с парашютной системой | 27 826 кг |
Мощность
Расчётная мощность складывалась из суммарного объёма высвобождаемой энергии на всех трёх ступенях термоядерного взрыва. Ядерный заряд первой ступени при этом обеспечивал мощность взрыва в 1,5 мегатонны в пересчёте на тринитротолуол, а запуск последующей реакции термоядерного синтеза во второй ступени предполагал добавить к мощности взрыва ещё 50 мегатонн. Полноценное усиление взрыва «Изделия 602» за счёт урановых «слоек» третьей ступени в подготовленной к испытанию бомбе не планировалось.
Радиус поражения
В штатном оснащении «Царь-бомба» способна, в зависимости от высоты взрыва и рельефа местности, образовать сплошной огненный шар диаметром в 3-4 километра с температурой, способной обратить в пепел всё окружающее. Сила ударной волны способна практически полностью разрушить армированные железобетонные здания в радиусе 30-40 километров от эпицентра, а световая вспышка взрыва способна вызвать термические ожоги третьей степени на расстоянии около 100 километров.
Даже по самым скромным оценкам, взрыв такой силы может мгновенно и полностью уничтожить Лос-Анджелес или Париж вместе с их обширными пригородами. Кроме того, подобный взрыв приводит к длительным электромагнитным возмущениям в атмосфере, вызывающим многочасовое нарушение любой радиосвязи.
Карта испытаний «Царь-бомбы»
Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными – в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Примечания
- Комментарии
- Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
- Источники
- Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
- ↑ В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
- Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
- , p. 157.
-
(нем.). Дата обращения: 14 декабря 2020.
- Gordon Corera. (англ.). BBC News (10 November 2008). Дата обращения: 28 октября 2011.
-
Карера Г. . BBC Russian.com (11 ноября 2008). Дата обращения: 31 октября 2011.
- (недоступная ссылка). Дата обращения: 24 июня 2013.
- (недоступная ссылка). Дата обращения: 23 декабря 2016.
«Касл Браво»
В начале 1950-х в СССР и США разрабатывали водородное оружие. Американцы в 1952 году создали первое термоядерное взрывное устройство, однако из-за своих габаритов оно не могло быть применено в качестве боеприпаса. 12 августа 1953 года первая в мире водородная бомба была испытана в СССР. А в 1954-м американские военные начали серию испытаний термоядерных боеприпасов под кодовым названием «Касл».
- Взрывное устройство «Кастл». Справа вверху: сооружение, в котором оно было установлено. Справа внизу: бункер на Бикини, в котором находились наблюдатели и помещалась измерительная аппаратура
Также по теме
Симметричный ответ: как «изделие 49» установило ядерный паритет между СССР и США
60 лет назад в обстановке строжайшей секретности на атомном полигоне Новая Земля состоялось первое штатное испытание советского…
Первый взрыв, получивший название «Касл Браво», был произведён 1 марта 1954 года на атолле Бикини. Вес взрывного устройства составлял 10,5 т. В нём впервые в американской практике в качестве горючего было применено твёрдое вещество — дейтерид лития. Организаторы испытаний рассчитывали, что мощность взрыва достигнет 6 мегатонн. Однако инженеры, создавшие устройство, не учли ряд факторов, и на практике его мощность достигла колоссальной цифры — 15 мегатонн. Наблюдатели, находившиеся в бункере в 32 км от места взрыва, заявили, что ощутили нечто похожее на сильное землетрясение. Грибовидное облако за 6 минут достигло высоты 40 км. Его максимальный диаметр составил около 100 км. Эти термоядерные испытания стали самыми мощными в истории США.
«Взрыв был невероятной силы. И его последствия оказались совершенно непредсказуемыми», — рассказал в интервью RT руководитель Центра военно-политических исследований Института США и Канады РАН Владимир Батюк.
По словам эксперта, помимо увеличения мощности, организаторы испытаний не учли ещё и розу ветров в регионе. Как следствие, из-за выброса радиоактивных веществ в атмосферу пострадали люди.
Территория размером 550 км на 100 км подверглась сильнейшему радиоактивному заражению. Даже в десятках километров от места взрыва уровень радиации был выше, чем в непосредственной близости от эпицентра некоторых ядерных испытаний в Неваде.
- Ядерные испытания на атолле Бикини
Американские военные знали, что ветер дует в сторону обитаемых островов, но испытания отменять не стали. В итоге сильно пострадали жители атоллов Ронгелапа и Аилингинаэ: их вывезли оттуда лишь после взрыва. Затем они прошли медобследование, и американские врачи объявили, что не видят никаких нарушений в работе их органов.
Однако через некоторое время у этих людей был выявлен целый ряд серьёзных заболеваний, в том числе рак, пишет в своей книге «По незнакомой Микронезии» историк Милослав Стингл. Местные женщины не могли выносить ребёнка, а у детей стали наблюдаться отклонения в интеллектуальном и физическом развитии. В итоге пострадавшие от последствий ядерного взрыва послужили американским медикам объектами для изучения воздействия радиации на человеческий организм.
«На людей смотрели как на подопытных кроликов», — отметил Кошкин.
Ядерная зима
Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:
- похолодание на 1 градус, пройдет незаметно;
- ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
- аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
- малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
- ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
- необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.
Ядерные боеприпасы
В дополнение к атомным бомбам и водородным бомбам, существуют и другие виды ядерного оружия, например, нейтронная бомба, кобальтовая бомба, «чистая» термоядерная бомба, электромагнитная бомба, гипотетически возможно создание бомбы с зарядом антивещества.
Нейтронная бомба
, как и водородная бомба, это термоядерное оружие. Вспышка от нейтронной бомбы относительно невелика, но высвобождается большое число нейтронов. Все живые организмы погибают от такой атаки, однако от взрыва нет физических разрушений.
Кобальтовая бомба
– это ядерная бомба, окруженная кобальтом, золотом, или другим материалом для того, чтобы детонация производила гораздо большее количество долгоживущих радиоактивных фрагментов. Этот тип оружия потенциально может служить в качестве оружия «судного дня». Потому что заражение от взрыва распространяется повсеместно. Она считается «грязным» оружием, потому что приводит к радиоактивному и нейтронному загрязнению.
«Чистая» термоядерная бомба
— это ядерное оружие, в котором происходит термоядерная реакция без помощи триггера атомной бомбы. Этот тип бомбы не приводит к радиоактивным осадкам.
Электромагнитная бомба
– этот вид оружия предназначен для производства ядерного электромагнитного импульса, который может привести к нарушению электронного оборудования. Ядерное устройство взорванное в атмосфере излучает электромагнитный импульс сферически. Целью такого оружия является повреждение электроники на больших расстояниях от взрыва.
Бомба с зарядом
– это очень мощное оружие, энергия этой бомбы рождается из разрушительной реакции взаимодействия материи и антиматерии. Такое устройство еще не было произведено из-за трудности синтезирования существенных количеств антиматерии.
Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.
Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».
Немного истории
После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.
Немного истории
Техническое задание
Согласно заданию, конструкторам необходимо было построить РДС двух моделей:
- РДС-1. Бомба с плутониевым зарядом, которая подрывается путем сферического обжатия. Устройство было позаимствовано у американцев.
- РДС-2. Пушечная бомба с двумя урановыми зарядами, сближающимися в стволе пушки, прежде чем создастся критическая масса.
Когда Америка узнала о том, что Советский Союз владеет секретами создания ядерного оружия, у нее появилось стремление к скорейшей эскалации превентивной войны.
Летом 1949 года появился план «Троян», по данным которого 1 января 1950 года планировалось начать боевые действия против СССР.
Что такое атомная бомба?
Принцип действия атомной бомбы основан на использовании энергии, возникающей в результате нарастающей цепной реакции, вызванной делением (расщеплением) тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер.
Сам процесс называют однофазным, и протекает он следующим образом:
После детонации заряда вещество, находящееся внутри бомбы (изотопы урана или плутония), переходит в стадию распада и начинает захват нейтронов.
Процесс распада нарастает, как снежная лавина. Расщепление одного атома приводит к распаду нескольких. Возникает цепная реакция, ведущая к разрушению всех атомов, находящихся в бомбе.
Начинается ядерная реакция. Весь заряд бомбы превращается в единое целое, и его масса переходит свою критическую отметку. Причем вся эта вакханалия длится очень недолго и сопровождается мгновенным выделением огромного количества энергии, что в конечном итоге и приводит к грандиозному взрыву.
Кстати, эта особенность атомного однофазного заряда – быстро набирать критическую массу – не позволяет бесконечно увеличивать мощность данного вида боеприпаса. Заряд может быть мощностью сотни килотонн, но чем ближе он к мегатонному уровню, тем меньше его эффективность. Он просто не успеет полностью расщепиться: произойдет взрыв и часть заряда так и останется неиспользованной – ее разметает взрывом. Эта проблема была решена в следующем виде атомного боеприпаса – в водородной бомбе, которая также называется термоядерной.
Современные опасности
Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.
Современные опасности
Что такое атомная бомба?
Принцип действия атомной бомбы основан на использовании энергии, возникающей в результате нарастающей цепной реакции, вызванной делением (расщеплением) тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер.
Сам процесс называют однофазным, и протекает он следующим образом:
После детонации заряда вещество, находящееся внутри бомбы (изотопы урана или плутония), переходит в стадию распада и начинает захват нейтронов.
Процесс распада нарастает, как снежная лавина. Расщепление одного атома приводит к распаду нескольких. Возникает цепная реакция, ведущая к разрушению всех атомов, находящихся в бомбе.
Начинается ядерная реакция. Весь заряд бомбы превращается в единое целое, и его масса переходит свою критическую отметку. Причем вся эта вакханалия длится очень недолго и сопровождается мгновенным выделением огромного количества энергии, что в конечном итоге и приводит к грандиозному взрыву.
Кстати, эта особенность атомного однофазного заряда – быстро набирать критическую массу – не позволяет бесконечно увеличивать мощность данного вида боеприпаса. Заряд может быть мощностью сотни килотонн, но чем ближе он к мегатонному уровню, тем меньше его эффективность. Он просто не успеет полностью расщепиться: произойдет взрыв и часть заряда так и останется неиспользованной – ее разметает взрывом. Эта проблема была решена в следующем виде атомного боеприпаса – в водородной бомбе, которая также называется термоядерной.
Ядерная зима
Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:
- похолодание на 1 градус, пройдет незаметно;
- ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
- аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
- малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
- ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
- необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.
Браво
Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения (например, появился урановый экран между инициирующей бомбой и основным зарядом) и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.
Статья опубликована в журнале «Популярная механика» (№9, Сентябрь 2003).
Атомная бомба
Атомная бомба
или ядерная бомба относится к ядерному оружию. Механизм действия заключается в цепной ядерной реакции, которая становится неуправляемой и приводит к взрыву из-за переизбытка энергии, выделяемой при делении ядер.
По этой причине этот тип бомбы также называют бомбой деления. Слово «атомная» не совсем точное, так в механизме задействовано только ядро атома, участвует в делении его протоны и нейтроны, его субатомные частицы, а не атом в целом, его электроны не задействованы.
Материал, подвергающийся делению берут сверхкритической массы. Такое количество обеспечивает попадание выделяющихся нейтронов из делящихся ядер в соседние ядра, провоцируя их деление. Докритическую массу вещества провоцируют либо бомбардировкой другой докритической массы, либо непосредственно взрывчатым веществом, которое взрываясь сжимает исходный материал провоцируя начало цепной реакции.
Материал для атомной бомбы чаще всего состоит либо из обогащенного урана, либо плутония. Энергия, выделяющаяся от взрыва варьируется от тонны до 500 килотонн в тротиловом эквиваленте. Бомба также освобождает радиоактивные фрагменты, которые являются атомами тяжелых элементов. Именно они содержатся в радиоактивных осадках после взрыва.
Ударная волна и тепловой эффект.
Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий – это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха – туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги.
Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.