Топ-10 самых больших астероидов

Семейства астероидов в наши дни

К 1970 году классификация астероидов уже превратилась в довольно сложную науку. К этому времени в 37 семействах состояли 42 процента известных на то время астероидов, а их было 1 697. К сожалению, такая кажущаяся стройность и точность теории не выдержала испытаний временем.

Как были выявлены эти семейства астероидов? Именно по памяти «родительской» орбиты ученые пришли к таким выводам. “Семейственность” здесь проявляется как определенная зона с более высокой концентрацией распределенных на элементах орбит точек. Не всегда со стопроцентной уверенностью можно заявить, что тот или иной астероид принадлежит к определенному семейству.

Крупнейшие астероиды главного пояса астероидов Солнечной системы, в сравнении друг с другом и с Землей

Иногда такие выводы вызывают сомнения. Еще стоит учитывать и то, что разные ученые руководствуются в своих исследованиях разными критериями, потому и результаты у них не всегда сходятся к одному. Только вот эти аспекты не являются принципиальными, ведь они редко когда вызывают определенные сомнения в том, что астероид принадлежит к какому-нибудь семейству.

Чем точнее становятся результаты наблюдений, тем больше появляется сомнений. Именно поэтому некой единой классификации семейств астероидов на данный момент вообще не существует. Астроном из Японии Иосихиде Козаи 75 процентов астероидов с 2125 распределил по 72 родственным семействам. Дальше пошли ученые-астрономы из Америки, которые заявили, что количество семейств превышает отметку ста. Только вот нужно быть особенно внимательным и бдительным, чтобы не посчитать отдельным семейством всего лишь группку случайных точек.

Но официально признанных научным сообществом семейств астероидов на данный момент существует 20—30 семейств астероидов и несколько десятков более мелких групп астероидов, которые не получили официальное признание. Большинство семейств находятся в главном поясе астероидов, но есть и такие, которые встречаются за его пределами, например, семейство Паллады, семейство Венгрии, семейство Фокеи, орбиты которых из-за слишком больших (слишком малых) радиусов или значительного наклонения лежат за пределами главного пояса.

Одно из семейств было найдено даже среди транснептуновых объектов в поясе Койпера, оно связано с карликовой планетой Хаумеа. Некоторые исследователи считают, что и троянские астероиды образовались когда-то в результате разрушения более крупного тела, но чётких доказательств этому пока не найдено.

Понятно, что большие семейства могут содержать сотни крупных астероидов и ещё множество мелких, большинство из которых, вероятно, ещё даже не открыты в силу своего размера. Мелкие же семейства могут содержать всего лишь около десятка более-менее крупных астероидов. Правда мы точно можем утверждать: почти треть астероидов главного астероидного пояса (до 35 %) входят в состав различных семейств, иными словами – приходятся остатками неких более крупных космических объектов, разрушившихся в прошлом в результате столкновений.

Самое вулканически активное тело

Вулканическая активность не так распространена в Солнечной системе, как можно было бы предположить. Хотя множество космических тел, таких как Марс и Луна демонстрируют признаки вулканической активности, пока существует еще четыре тела, у которых она тоже наблюдается.

Вулканическая активность на спутнике Юпитера – Ио.

Кроме Земли, в Солнечной системе есть три вулканических спутника: Тритон (спутник Нептуна), Ио (спутник Юпитера), и Энцелад (спутник Сатурна).

Из всех них Ио – самый активный. На спутниковых снимках насчитали около 150 вулканов, а астрономы считают, что их общее число составляет около 400. Удивительно то, что здесь вообще есть вулканическая активность, учитывая его ледяную поверхность и расстояние от Солнца.

По одной из теорий, объясняющей, как в таком холодном месте сохраняется горячая внутренность, вулканическая активность Ио возникает из-за внутреннего трения .

Вулкан на Ио

Спутник постоянно внутренне деформируется из-за внешней тяги Юпитера и двух крупных спутников Ганимеда и Европы. Противодействие создает внутренние приливы, которые вызывают трение и вырабатывают тепло для поддержания активности вулканов.

Классификация астероидов

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью.

Группы орбит и семейства

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы — относительно свободные образования, тогда как семейства — более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Спектральные классы

В 1975 году Кларк Р. Чапмен (Clark R. Chapman), Дэвид Моррисон (David Morrison) и Бен Целлнер (Ben Zellner) разработали систему классификации астероидов, опирающуюся на показатели цвета, альбедо и характеристики спектра отражённого солнечного света. Изначально эта классификация определяла только три типа астероидов:

Класс С — углеродные, 75 % известных астероидов.
Класс S — силикатные, 17 % известных астероидов.
Класс M — металлические, большинство остальных.

Этот список был позже расширен и число типов продолжает расти по мере того, как детально изучается все больше астероидов:

Класс A — характеризуются достаточно высоким альбедо (между 0,17 и 0,35) и красноватым цветом в видимой части спектра.
Класс B — в целом относятся к астероидам класса C, но почти не поглощают волны ниже 0,5 мкм, а их спектр слегка голубоватый. Альбедо в целом выше, чем у других углеродных астероидов.
Класс D — характеризуются очень низким альбедо (0,02−0,05) и ровным красноватым спектром без чётких линий поглощения.
Класс E — поверхность этих астероидов содержит в своём составе такой минерал, как энстатит и может иметь сходство с ахондритами.
Класс F — в целом схожи с астероидами класса B, но без следов «воды».
Класс G — характеризуется низким альбедо и почти плоским (и бесцветным) в видимом диапазоне спектром отражения, что свидетельствует о сильном ультрафиолетовом поглощении.
Класс P — как и астероиды класса D, характеризуются довольно низким альбедо, (0,02−0,07) и ровным красноватым спектром без чётких линий поглощения.
Класс Q — на длине волны 1 мкм в спектре этих астероидов присутствуют яркие и широкие линии оливина и пироксена и, кроме того, особенности, указывающие на наличие металла.
Класс R — характеризуются относительно высоким альбедо и красноватый спектром отражения на длине 0,7 мкм.
Класс T — характеризуется низким альбедо и красноватым спектром (с умеренным поглощением на длине волны 0,85 мкм), который похож на спектр астероидов P- и D- классов, но по наклону занимающий промежуточное положение.
Класс V — астероиды этого класса умеренно яркие и довольно близки к более общему S классу, которые также в основном состоят из камня, силикатов и железа (хондритов), но отличаются S более высоким содержанием пироксена.
Класс J — это класс астероидов, образовавшихся, предположительно, из внутренних частей Весты. Их спектры близки к спектрам астероидов V класса, но их отличает особо сильные линии поглощения на длине волны 1 мкм.

Следует учитывать, что количество известных астероидов, отнесённых к какому-либо типу, не обязательно соответствует действительности. Некоторые типы достаточно сложны для определения, и тип определённого астероида может быть изменён при более тщательных исследованиях.

Проблемы спектральной классификации

Изначально спектральная классификация основывалась на трёх типах материала, составляющего астероиды:

Класс С — углерод (карбонаты).
Класс S — кремний (силикаты).
Класс M — металл.

Однако существуют сомнения в том, что такая классификация однозначно определяет состав астероида. В то время, как различный спектральный класс астероидов указывает на их различный состав, нет никаких доказательств того, что астероиды одного спектрального класса состоят из одинаковых материалов. В результате учёные не приняли новую систему, и внедрение спектральной классификации остановилось.

Распределение по размерам

Количество астероидов заметно уменьшается с ростом их размеров. Хотя это в целом соответствует степенному закону, есть пики при 5 км и 100 км, где больше астероидов, чем ожидалось бы в соответствии логарифмическому распределению.

Приблизительное количество астероидов N с диаметром больше чем D
D 100 м 300 м 500 м 1 км 3 км 5 км 10 км 30 км 50 км 100 км 200 км 300 км 500 км 900 км
N 25 000 000 4 000 000 2 000 000 750 000 200 000 90 000 10 000 1100 600 200 30 5 3 1

Гипотезы появления пояса астероидов

Безусловно, возникновение в относительно небольшом пространстве большого количества схожих между собой объектов, вызывает вопрос об их происхождении. Почему и как они появились, что их удерживает в одном месте?

В XIX веке господствовала теория появления пояса астероидов, по которой они являлись остатками гипотетической планеты Фаэтон. Предположительно, Фаэтон существовал между орбитами Марса и Юпитера, и разрушился при столкновении с кометой.

Однако подтверждений данной гипотезы нет. А вот противоречий в ней нашлось много. Например, различный химический состав астероидов указывает, что они произошли от разных тел. Тем более, для единичного разрушения необходимо огромное количество энергии, которого не хватило бы при ударе даже с очень большой кометой.

Вероятнее всего, главный пояс является не состоявшейся планетой. То есть из-за влияния гравитационных сил Юпитера частицы не смогли образовать одно целое. В результате получилось множество различных по составу и размеру объектов.

Фаэтон

Главная гипотеза возникновения пояса астероидов основана на том, что он сформировался возле Юпитера. Как следствие, планетная гравитация постоянно воздействует на астероидные орбиты. А большое количество энергии, получаемой от Юпитера, влечёт их столкновения друг с другом. Но при этом они не способны образовать протопланету или другое космическое тело. Напротив, они разрушаются и формируют меньшие элементы.

Как считают учёные, после таких столкновений большая часть планетезималей рассыпалась на множество частей. В значительной мере их выбросило за границу Солнечной системы, поэтому поле астероидов имеет небольшую плотность. Собственно говоря, оставшиеся стали двигаться по вытянутым орбитам.

Более того, семейства и группы астероидов появились в результате их столкновений. Такие объединения включают в себя тела с похожими орбитами и составом.

В то же время, гравитационная сила Юпитера создаёт неустойчивые орбиты, возникают резонансы. Таким образом существуют участки, где почти нет астероидных объектов.

Итак, мы узнали где находится и проходит главный пояс астероидов

Что интересно, за относительно небольшой промежуток времени было открыто так много новых небесных образований.Бесспорно, эта область привлекает к себе внимание, ведь там такое большое поле для изучения!

Чем отличается метеорит от астероида?

Небесные тела не отличаются большим разнообразием, но при изменении их положения в пространстве солнечной системы они меняют свои свойства, от чего получают другое название.

Так, астероидов, размеры которых достигают сотен километров в диаметре, не очень много, но сам пояс этих объектов (астероиды «стремятся объединяться») включает более 750 тысяч более мелких, средних и даже совсем маленьких небесных тел. Все они двигаются по определенной орбите, но в результате различных сил и процессов иногда «срываются» с нее и движутся в космическом пространстве. Если один из таких астероидов проникнет в атмосферу Земли, он станет метеором.

Чтобы достичь поверхности планеты метеору придется столкнуться с несколькими слоями атмосферы, где его тело будет подвергнуто различным химическим и физическим процессам, проще говоря – «сгорит». В случае, когда какая-то часть метеора все же останется целой и упадет на Землю, она станет метеоритом. Чаще всего это ядро бывшего астероида, состоящее преимущественно из железа (около 90%) или минералов – кремния, магния и прочих. Огненный шар, образующийся при взрыве и горении метеора в атмосфере, называют болидом.

Как зовут астероиды?

Первые обнаруженные астероиды получали имена древнегреческих мифологических героев и богов. По странному стечению обстоятельств, сначала это были женские имена, на мужское же имя мог рассчитывать разве что астероид с необычной орбитой. Позже эта тенденция постепенно сошла на нет.

К тому же, право давать астероидам любые имена получили люди, впервые их открывающие. Таким образом, сегодня тот, кто обнаружит новый астероид, может дать ему название по своему вкусу, и даже назвать его своим собственным именем.

Но есть и определенные правила именования астероидов. Давать им названия можно только после того, как орбита небесного тела будет надежно вычислена, а до этого времени астероиду дают непостоянное имя. Обозначение астероида отражает дату его обнаружения.

Например, 1975DС, где цифры означают год, буква D – это номер полумесяца в году, когда был обнаружен астероид, а С – порядковый номер небесного тела в этом полумесяце (приведенный в пример астероид был открыт третьим). Всего полумесяцев 24, букв в английском алфавите 26, поэтому две буквы – I и Z –при именовании астероидов решили не использовать.
Если за один полумесяц будет открыто больше, чем 24 астероида, второй букве приписывают индекс 2, затее – 3, и так далее. И уже после того, как астероид получит имя официально (а бывает, что на это уходит не одно десятилетие – все это время просчитывается орбита), его название включает порядковый номер и само имя.

Формы и размеры астероидов:

В определении термина астероид указывается как небесное тело неправильной формы, и это стало одной из причин исключения их из ряда планет, но самые крупные объекты все же похожи на шар – чем же это объяснить?

Ученые полагают, что при формировании Солнечной системы астероиды имели значительные размеры и соответствующую форму, но в процессе своей «жизни» они сталкивались с другими космическими объектами, подвергались взрывам и распадам. Так, сохранить свое первоначальное состояние удалось лишь единицам. На небесных же телах малых размеров уменьшена и сила тяжести, что не позволяет сминать и утрамбовывать тяжелые вещества, придавая поверхности привычную форму шара. Поэтому астероиды существуют в виде агрегатов, в состав которых входит несколько блоков. Они удерживаются между собой силой тяготения, которая также не позволяет им прочно объединяться и сливаться между собой. Все эти параметры и формируют искомую форму, которую принято считать неправильной.

Еще одни важный критерий – размер. Так, ученые определили, что объектами данного типа считаются тела, превышающие 30 метров в диаметре, но как точно измерить размер с Земли? Для этого применяется несколько методов.

Впервые измерить диаметр небесного тела ученые решились еще в начала XIX века, применив нитяной микрометр. Это устройство, совмещаемое с телескопом, представляющее собой две тончайшие нити или проволоки, расстояние между которыми изменяется благодаря винтовому механизму высокой точности. Недостатком такой методики выступил тот факт, что при использовании различных телескопов получались разные результаты и иногда разница в показателях превышала разы.

Развитие науки и техники позволило изобрети другие способы определения размеров, самым популярными из которых стали транзитный метод и поляриметрия.

Суть первого заключается в том, что все небесные тела движутся, и когда астероид проходит на фоне отдаленной звезды, она его покрывает. Если известно расстояние до астероида, достаточно измерить длительность уменьшения сияния звезды, чтобы получить весьма точный размер искомого небесного тела. Недостаток методики – сравнительная точность расчетов присуща лишь крупным объектам.

В основе поляриметрии лежат параметры яркости самого астероида. Так, чем крупнее его размеры, тем больше солнечных лучей способна отразить его поверхность. Однако следует учитывать, что отражательные способности зависят от химических элементов, преобладающих в составе: наличие металлов сделает объект более ярким даже при небольших параметрах. Однако и отражательную способность (альбедо) ученые легко определяют при помощи инфракрасных излучателей, основываясь на принципе: чем меньше света отражает тело, тем сильнее он его поглощает и нагревается, а, следовательно, больше тепловой энергии выделяет.

Используется поляриметрия и для определения формы небесного тела. Метод позволяет зафиксировать различия в блеске, изменяющиеся во время вращения астероида вокруг своей орбиты. Эти же наблюдения дают возможность изучить период вращения и структуру поверхности, обнаружить на ней крупные выступы и впадины.

Дополнительно используются такие методы:

– радиолокационный. Основывается на сравнении данных зондов и эхолокаций, считается одной из самых точных методик. Позволяет изучить, скорость вращения и траекторию движения, особенности поверхности, расстояние до объекта и прочее;

– спекл-интерферометрия. Суть метода состоит в детальном изучении зернистой структуры изображения небесного тела.

Населения

Сотни тысяч малых планет были обнаружены в Солнечной системе, и тысячи открываются каждый месяц. Центр малых планет зарегистрировал более 213 миллионов наблюдений и 794 832 малых планет, из которых 541 128 имеют достаточно хорошо известные орбиты, чтобы им были присвоены постоянные официальные номера . Из них 21 922 имеют официальные имена. По состоянию на 19 мая 2019 года безымянная малая планета с наименьшим номером имеет номер (3708) 1974 FV 1 , а малая планета с самым высоким номером — 543315 Асмахаммари .

Существуют различные обширные популяции малых планет:

  • Астероиды ; традиционно большинство из них находились во внутренней части Солнечной системы.

    • Астероиды , сближающиеся с Землей , те, чьи орбиты уходят внутрь орбиты Марса. Используется дальнейшая их подклассификация на основе орбитального расстояния:

      • Астероиды-апохелы вращаются на расстоянии перигелия Земли и, таким образом, полностью находятся в пределах орбиты Земли.
      • Атен астероидов , у которых большая полуось меньше земной, а афелий (самое дальнее расстояние от Солнца) больше 0,983 а.е.
      • Астероиды Аполлона — это те астероиды, большая полуось которых больше земной, а расстояние до перигелия составляет 1,017 а.е. или меньше. Подобно астероидам Атона, астероиды Аполлона пересекают Землю .
      • Амуры те ближне- Земле астероиды, приближающиеся на орбиту Земли из запредельного , но не пересекают ее. Астероиды Amor далее подразделяются на четыре подгруппы, в зависимости от того, где их большая полуось попадает между орбитой Земли и поясом астероидов;
    • Земные трояны , астероиды, разделяющие орбиту Земли и гравитационно привязанные к ней. По состоянию на 2011 год известен только один — 2010 TK 7 .
    • Марсианские трояны , астероиды, разделяющие орбиту Марса и гравитационно привязанные к ней. По состоянию на 2007 год известно восемь таких астероидов.
    • Пояс астероидов , члены которого движутся по примерно круговым орбитам между Марсом и Юпитером. Это оригинальная и наиболее известная группа астероидов.
    • Трояны Юпитера , астероиды, разделяющие орбиту Юпитера и гравитационно привязанные к нему. Численно они равны астероидам главного пояса.
  • Далекие малые планеты ; общий термин для малых планет во внешней Солнечной системе.

    • Кентавры , тела во внешней Солнечной системе между Юпитером и Нептуном. У них нестабильные орбиты из-за гравитационного влияния планет-гигантов, и поэтому они должны были прибыть откуда-то еще, вероятно, за пределами Нептуна.
    • Трояны Нептуна , тела, разделяющие орбиту Нептуна и гравитационно привязанные к ней. Хотя известно лишь несколько, есть свидетельства того, что трояны Нептуна более многочисленны, чем астероиды в поясе астероидов или трояны Юпитера.
    • Транснептуновые объекты , тела на орбите Нептуна , самой удаленной планеты, или за ее пределами .

      • Пояс Койпера , объекты внутри кажущейся населения высадки примерно 55 а.е. от Солнца

        • Классические объекты пояса Койпера, такие как Макемаке , также известные как кубевано, находятся на изначальных, относительно круговых орбитах, которые не находятся в резонансе с Нептуном.
        • Объекты резонансного пояса Койпера

          Плутино , такие тела, как Плутон , находящиеся в резонансе 2: 3 с Нептуном.

      • Рассеянные дисковые объекты, такие как Эрида , с афелией

        Резонансные рассеянные дисковые объекты .

        за пределами пояса Койпера. Считается, что они были разбросаны Нептуном.

      • Отдельные объекты, такие как Sedna , с афелиями и перигелиями

        Седноиды , отдельные объекты с перигелиями более 75 а.е. (Sedna, 2012 VP 113 , Leleākūhonua ).

        за пределами пояса Койпера.

      • Облако Оорта , гипотетическое население считается источником , которые могут продлить до 50000 а.е. от Солнца

ФИЗИКА

§ 65. Малые тела солнечной системы

Помимо больших планет и планет-карликов вокруг Солнца движется более четырёхсот тысяч малых небесных тел размером от километра и более, называемых астероидами, что в переводе с греческого означает «звездоподобные». Отличить астероиды от звёзд можно только по их движению на фоне звёздного неба. Совокупность обращающихся вокруг Солнца астероидов, орбиты которых пролегают в основном в пространстве между орбитами Марса и Юпитера, принято называть Главным поясом астероидов.

Вокруг Солнца также обращаются по вытянутым эллиптическим орбитам кометы и метеорные тела (называемые также метеороидами), т. е. твёрдые тела различных размеров — от песчинки до мелкого астероида. Астероиды, кометы и метеорные тела называются малыми телами Солнечной системы.

Кометы представляют собой большие образования из разреженного газа с очень маленьким твёрдым ядром. Ядро состоит из льдов: водного (более 80%), метанового, аммиачного, углекислого и др. Кометный лёд перемешан с пылью и каменистым веществом.

Вдали от Солнца при температуре порядка -260 °С комета не имеет ни головы, ни хвоста. При приближении к Солнцу на такое расстояние, при котором температура кометы повышается до -140 °С, льды начинают испаряться, образуя прозрачную атмосферу — голову кометы (рис. 184).

Рис. 184. Комета Холмса, открыта 6 ноября 1892 г.

При испарении льдов на поверхности ядра остаётся корка, состоящая из пыли и других частиц.

Кванты солнечного света, налетая на голову кометы, ионизируют молекулы газов. Солнечный ветер, действуя своим магнитным полем на ионы, уносит их от Солнца со скоростью 500—1000 км/с, в результате чего у кометы образуется длинный и прямой плазменный хвост.

Солнечный свет (поток световых квантов) оказывает давление на пылинки, благодаря чему у кометы образуется второй хвост — пылевой. Поскольку световое давление сравнительно невелико, пыль покидает голову кометы довольно медленно и, следуя за ней по криволинейной траектории, принимает изогнутую форму (рис. 185).

Рис. 185. Схема образования двух типов хвостов кометы

Название «комета» происходит от греческого слова kometes, т.е. «длинноволосый». Вероятно, такое название было дано благодаря наличию головы и развевающегося за ней хвоста.

При подходе кометы близко к Солнцу (например, при её движении внутри земной орбиты), из-за сильного разогрева газ и пыль вырываются из ядра непрерывно и с такой большой скоростью, что его масса может уменьшаться на 30—40 т в секунду. Помимо этого в комете могут происходить взрывы, приводящие к разрушению ядра.

Остатки распавшегося кометного ядра, названные метеорными телами, могут растянуться вдоль орбиты кометы на большое расстояние. Если Земля проходит сквозь их скопление, они, влетая в её атмосферу со скоростью 11 км/с, испаряются на высоте в несколько десятков километров. Иногда кажется, что метеоры вылетают из какой-либо области небесной сферы (рис. 186). Область небесной сферы, кажущаяся источником метеоров, называется радиантом.

Рис. 186. Явление метеора

Если из межпланетного пространства в атмосферу проникает крупное железное или каменное метеорное тело, например обломок астероида массой в несколько килограммов, то в большинстве случаев оно не успевает разрушиться в атмосфере и падает на землю. Такое тело называется метеоритом.

Бывает, что крупное метеорное тело на большой скорости проникает в нижние слои атмосферы. От трения о воздух оно сильно нагревается, и у него появляется оболочка из раскалённых газов и частиц. Выглядит это как летящий по небу большой огненный шар, оставляющий позади себя яркий след. Такое явление называется болидом, (рис. 187).

Рис. 187. Болид над Латвией

Вероятность падения астероида на Землю

Недавно сотрудники Лаборатории реактивного движения NASA объявили, что этот астероид является самым опасным для нашей планеты. На данный момент вероятность его столкновения с Землей маловероятна, однако он постоянно меняет свой маршрут из-за ряда факторов. Одним из них является эффект Ярковского — когда разные стороны астероида нагреваются под светом Солнца, возникает реактивный импульс, который понемногу влияет на линию движения объекта. Также следует учитывать изменение траектории из-за сопротивления солнечному ветру.

Поверхность астероида Бенну

В ходе новой научной работы исследователи во главе с Давидом Фарноккья (Davide Farnocchia) учли все эти факторы и пришли к выводам, которые были опубликованы в научном журнале Icarus. Расчеты показали, что вероятность столкновения астероида Бенну с нашей планетой до 2300 года составляет 1 к 1750. Скорее всего, катастрофа случится в сентябре 2182 года. Опасность астероида получила значение -1,6 по шкале Палермо — ничего опаснее Бенну ученым неизвестно. Ранее самым опасным астероидом считался (29075) 1950 DA с показателем -1,4.

(29075) 1950 DA — второй по опасности астероид

Шкала Палермо используется астрономами для оценки опасности околоземных объектов. При выяснении уровня опасности используют данные о кинетической энергии и вероятности столкновения Земли с околоземным объектом. Также существует шкала Торино, но она дает менее точные результаты и используется для простых описаний.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector