Кометы солнечной системы

Появление комет

Появление комет предсказать практически невозможно

Ученые и любители обращают на них внимание с давних времен. Большие небесные тела пролетают у Земли редко, и такое зрелище завораживает и устрашает

В истории есть сведения о таких ярких телах, которые сверкают через облака, затмевая своим свечением даже Луну. Именно с появлением первого такого тела (в 1577 году) началось изучение движения комет. Первые ученые смогли открыть десятки самых разных астероидов: приближение их к орбите Юпитера начинается свечением хвоста, а чем ближе тело к нашей планете, тем ярче оно горит.

Известно, что кометы – такие тела, которые движутся по определенным траекториям. Обычно она имеет вытянутую форму, и характеризуется положением относительно Солнца.

Орбита кометы может быть самой необычной. Время от времени некоторые из них возвращаются к Солнцу. Ученые говорят, что такие кометы – периодические: они пролетают возле планет через определенный промежуток времени.

А если разница?

Комета, как и астероид относится к классу малых тел. Сейчас попытаемся понять, чем отличается комета от астероида. О главном отличии вы читали выше — это наличие хвоста, вернее содержание льда, пыли в составе кометы, которые испаряясь и, образуют хвост. Астероиды же состоят из каменных составов и металлов.
Хотя некоторые могут иметь хвост, но это скорее исключение из правил, и вызвано такое явление столкновением, при котором начинает сноситься с поверхности астероида облако поднятой космической пыли.

Второе отличие заключается в их орбитах: кометы, как правило, имеют сильно вытянутые орбиты, заходящее за гипотетическую область облака Оорта, что находится от Солнца на расстоянии, примерно 7500 млн километров. Астероиды же кучкуются, образуя пояса — пример, главный пояс, находящийся между Марсом и Юпитером. Орбиты у них круговые.

Еще можно добавить о стабильности размеров, комета теряет свои объемы, каждый раз пролетая у Солнца, а астероид остается неизменным. Вот и ответили на вопрос, так чем отличается комета от астероида?

Строение комет

Путешествующую в космических просторах комету нельзя визуально определить, но, при подлёте её к Солнцу, положение меняется. Странница распускает причудливый хвост, и тогда мы её видим во всей красе. Принято выделять три её основные части.

Ядро

Это центральная, твёрдая часть, обладающая подавляющей долей массы тела. Превалирующая модель Уилла предполагает, что ядро состоит из смеси льда, в которую вкраплены частицы метеорного вещества. Модель получила названия теории «грязного снежка». Слои замороженных газов перемежаются прослойками пыли.

Сближаясь с Солнцем, поверхность кометы разогревается, и начинаются испарение газов и выброс пыли в виде протяжённого хвоста.

Кома

Ядро окружено светлой туманной оболочкой чашеобразной формы, состоящей из пыли и газа. Кома достигает размеров от 100 тыс. км до 1,4 млн. км. Она может деформироваться от светового давления и вытягиваться в к Солнцу. Ядро и кома образуют кометную голову. Сама же кома имеет три составные части: внутреннюю, видимую и ультрафиолетовую.

Хвост

Кометный хвост — это светящаяся полоса, вызванная действием солнечного ветра и направленная в обратную от Солнца сторону. Хвост и кома создают 99,9% свечения, но имеют лишь миллионную долю от всей массы кометы. Длина и формы кометных хвостов различаются ощутимо. В 1680 году Большая комета (С/1680 V1) обзавелась хвостом, растянувшимся на 240 млн. км. Для хвостов не характерны резкие очертания. Они фактически прозрачны, потому что наполнены очень разреженными газами и мельчайшими пылевыми частицами. Пылинки по своему составу аналогичны составу астероидов. Свечение газа происходит из-за его ионизации ультрафиолетом, а пыль имеет свойство рассеивать свет.

Наш соотечественник Ф. Бредихин, разработчик теории форм и хвостов комет, последние классифицировал, выделив три типа:

  1. Узкие и прямые.
  2. Широкие и слегка искривлённые.
  3. Короткие.

Такое различие объясняется различными составом и параметрами частиц, из которых составлены кометы. Солнечный ветер действует на них по-разному, поэтому и хвосты так разнообразны.

Гало газообразного водорода

Искусственно окрашенное изображение в далеком ультрафиолете (с пленкой) кометы Кохоутек (Skylab, 1973)

ОАО-2 («Звездочет») обнаружило вокруг комет большие гало из газообразного водорода. Космический зонд Джотто обнаружил ионы водорода на расстоянии 7,8 миллиона км от Галлея, когда он пролетел вблизи кометы в 1986 году. Было обнаружено, что ореол газообразного водорода в 15 раз больше диаметра Солнца (12,5 миллиона миль). Это побудило НАСА направить миссию «Пионерская Венера» ​​на комету, и было определено, что комета испускает 12 тонн воды в секунду. Эмиссия газообразного водорода не была обнаружена с поверхности Земли, потому что эти длины волн заблокированы атмосферой. Процесс разложения воды на водород и кислород был изучен прибором ALICE на борту космического корабля Rosetta. Одна из проблем — откуда и как поступает водород (например, расщепление воды ):

Ореол водородного газа в три раза больше Солнца был обнаружен Skylab вокруг кометы Кохутек в 1970-х годах. SOHO обнаружила гало водородного газа радиусом более 1 а.е. вокруг кометы Хейла-Боппа . Излучаемая кометой вода расщепляется солнечным светом, а водород, в свою очередь, излучает ультрафиолетовый свет. Размеры ореолов составляют десять миллиардов метров в поперечнике 10 ^ 10, что во много раз больше Солнца. Атомы водорода очень легкие, поэтому они могут путешествовать на большое расстояние, прежде чем сами ионизируются Солнцем. Когда атомы водорода ионизируются, их особенно уносит солнечный ветер.

Ситуация в России

Исследовательские работы в отношении тел кометного типа организовывались и на территории России, причём происходило это не только в последние годы, но и многие века назад. Первые упоминания известных из древнерусских летописаний, относящихся к Повести временных лет

Создатели уделяли данному феномену особое внимание. Связано это, скорее, с особыми приметами, согласно которым комета является предвестником беды и горя

Несмотря на это, особенного наименования для этих субъектов в Древней Руси не было. Их просто принимали за звёзды, которые имеют способность двигаться, а также наделены хвостом. В 1066 году описание впервые оказалось на страницах летописей. Согласно их текстам, рассматриваемый феномен назвался как «звезда велика». На этот счёт были написаны большие стихи.


Ядро кометы 103P/Hartley, снятое 4 ноября 2010 года КА EPOXI

Термин «комета» стал применяться в русском языке наряду с переводами сочинений, которые действовали на территории Европы. Но есть и более ранние упоминания. Например, они встречаются в сборниках, посвящённых проведению исследовательских мероприятий. Это что-то похожее на энциклопедию. Она повествует человечеству современности об особенностях мироустройства. Перевод писания произошёл с немецкого языка в 16 веке.

Слово это оказалось новым для всех русских читателей. В связи с этим переводчику пришлось проделать большую работу, чтобы донести суть явления до читателя. В итоге он принял решение говорить не «комета», а «звезда». Но впоследствии в силу перемен в мире астрономии новое понятие прочно вошло в повседневный обиход. Случилось это в середине 1660-х годов, когда в европейском небе тела стали видны и заметны.

Рассматриваемое событие породило колоссальный интерес к этому феномену. Поэтому, читая сочинения древних авторов, переведённые на современный русский язык, можно было понять, что явления в корне различны. Однако отношение к возникновению небесных тел как знамений не изменилось и сохранялось в России и европейских государствах в течение продолжительного времени. Длилось это приблизительно до начала 18 века, когда возникли первые сочинения, где было отрицание «необыкновенной» природы комет.

А Вы смотрели: Современные способы космической защиты от метеоритов

Впервые ценные научные знания о данном явлении освоили европейские учёные. Всё это привело к тому, что русские специалисты внесли в ознакомление с ними собственный вклад, и во второй половине 19 века силами астронома Федора Бредихина была создана полноценная теория о природе кометных тел. Также возникли новые версии касательно их происхождения, образования хвостов, уникального разнообразия форм.

Комета Энке (2P/Энке)

Удивительна история “открытий” кометы Энке, ведь её открывали:

  • Пьер Мешен в 1786 году
  • Каролина Гершель в 1795 году
  • Жан-Луи Понс и Алексис Бувар в 1805 году

И только в 1818 году все тот же Жан-Луи Понс сумел “открыть” комету по-настоящему, рассчитав её орбиту. Но, в 1819 году это достижение “переплюнул” немец Иоганн Энке. Именно он сумел не только уточнить орбиту кометы, но и связать “вновь открытую” космическую гостью с прошлыми, более ранними наблюдениями. В его честь она в итоге и была названа.

Комета Энке (2P/Энке)

Комета Энке обладает экстремально коротким периодом обращения и возвращается каждые 3,3 года, однако из-за того, что её радиус ядра составляет всего 3,1 км, она достаточно слабая, и это не смотря на то, что в ближней точке она подходит к Солнцу всего на 50 млн. км.). Эта комета является источником мелких частиц, порождающих метеорный поток Тауриды (точнее три потока: северные, южные и бета-тауриды), активный ежегодно в октябре – ноябре. Существует интересная гипотеза о том, что знаменитый Тунгусский метеорит принадлежал именно к этому метеорному потоку.

Особенности строения комет

Ядро кометы

  1. Теория «грязного снежка». Это предположение наиболее распространено и принадлежит американскому ученому Фреду Лоуренсу Уипплу. По данной теории, твердый участок кометы — не что иное, как соединение льда и фрагментов вещества метеоритного состава. По мнению этого специалиста, различают старые кометы и тела более молодой формации. Структура их различна по причине того, что более зрелые небесные тела неоднократно приближались к Солнцу, что подплавило их изначальный состав.
  2. Ядро состоит из пыльного материала. Теория была озвучена в начале 21 столетия благодаря изучению явления американской космической станцией. Данные этой разведки говорят о том, ядро — это пыльный материал очень рыхлого характера с порами, занимающими большинство его поверхности.
  3. Ядро не может представлять из себя монолитную конструкцию. Далее гипотезы расходятся: подразумевают структуру в виде снежного роя, глыб каменно-ледяного скопления и метеоритного нагромождения вследствие влияния планетарных гравитаций.

Кома кометы

  • Внутренняя часть химического, молекулярного и фотохимического состава. Строение ее определяется тем, что в этой области сосредоточены и наиболее активизируются основные изменения, происходящие с кометой. Реакции химического плана, распад и ионизация нейтрально заряженных частиц — все это характеризует процессы, которые протекают во внутренней коме.
  • Кома радикалов. Состоит из активных по своей химической природе молекул. В данном участке не наблюдается повышенной активности веществ, которая так характерна для комы внутреннего плана. Впрочем, и здесь продолжается процесс распада и возбуждения описываемых молекул в более спокойном и плавном режиме.
  • Кома атомного состава. Ее еще называют ультрафиолетовой. Эту область атмосферы кометы наблюдают в водородной линии Лайман-альфа в удаленном ультрафиолетовом спектральном участке.

Хвост кометы

  1. Прямолинейные и узкоформатные хвосты. Данные составляющие кометы имеют направление от главной звезды Солнечной системы.
  2. Немного деформированные и широкоформатные хвосты. Эти шлейфы уклоняются от Солнца.
  3. Короткие и сильно деформированные хвосты. Такое изменение вызвано значительным отклонением от главного светила нашей системы.
  • Пылевой хвост. Отличительной визуальной чертой данного элемента является то, что свечение его имеет характерный красноватый оттенок. Шлейф подобного формата — однородный по своей структуре, протягивается на миллион, а то и десяток миллионов километров. Образовался он за счет многочисленных пылинок, которые энергия Солнца отбросила на дальнее расстояние. Желтый оттенок хвоста объясняется рассеиванием пылинок солнечным светом.
  • Хвост плазменной структуры. Этот шлейф гораздо обширнее, чем пылевой, потому что протяженность его исчисляется десятками, а порой и сотнями миллионов километров. Комета вступает во взаимодействие с солнечным ветром, от чего и возникает подобное явление. Как известно, солнечные вихревые потоки пронизаны большим количеством полей магнитной природы образования. Они, в свою очередь, сталкиваются с плазмой кометы, что приводит к созданию пары областей с диаметрально различной полярностью. Временами происходит эффектный обрыв этого хвоста и образование нового, что выглядит очень впечатляюще.
  • Антихвост. Появляется он по другой схеме. Причина заключается в том, что направляется он в солнечную сторону. Влияние солнечного ветра на подобное явление крайне невелико, потому что в состав шлейфа входят пылевые частицы крупного размера. Наблюдать подобный антихвост реально только при моменте пересечения Землей орбитальной плоскости кометы. Дискообразное образование окружает небесное тело практически со всех сторон.

Планируются ли новые исследования?

Определить размеры комет, а также их свойства, позволили многочисленные проведённые исследования. Несмотря на их большое количество, работы продолжают вестись до сих пор, и на ближайшее будущее запланированы новые мероприятия.

В качестве наиболее интересного явления, которое позволит изучить орбиты комет поближе и ознакомиться с их особыми уникальными свойствами, выступает миссия под названием «Розетта». Её организатором является космическое агентство из Европы. Процедура запуска автоматической станции приходилась на 2004 год. В 2014 г. случилось достижение аппаратом кометы (в ноябре).

Произошло это в тот момент времени, когда наблюдаемое тело было максимально удалено от Солнца, а его активность оставляла желать лучшего. Устройству «Розетта» довелось наблюдать за развитием активности объекта в течение двухлетнего отрезка времени. Оно сопровождало его как спутник на дистанции от 3 до 300 км относительно ядерной части.

Комета ISON появляется в камере высокого разрешения HI-1 на космическом корабле STEREO-A. Темные «облака», идущие справа, — это усиление плотности солнечного ветра, вызывающее всю рябь в хвосте кометы Энке. Такого рода взаимодействия солнечного ветра дают нам ценную информацию о состоянии солнечного ветра вблизи Солнца.

Это событие стало культовым, поскольку впервые за всю историю исследовательских мероприятий на ядро спустился модуль (посадочный), который наряду с решением прочих задач должен был позаимствовать образцы грунта и осуществить их исследование непосредственно на борту, а затем передать на планету Земля фотоснимки струй. На тот момент времени они как раз вырывались из ядерной части кометы. Несмотря на то, что программа была практически выполнена, справиться с этими задачами аппарату, к сожалению, не удалось.

Номенклатура

За минувшие столетия правила именования комет неоднократно меняли и уточняли. До начала XX века большинство комет называлось по году их обнаружения, иногда с дополнительными уточнениями относительно яркости или сезона года, если комет в этом году было несколько. Например, «Большая комета 1680 года», «Большая сентябрьская комета 1882 года», «Дневная комета 1910 года» («Большая январская комета 1910 года»).

После того как Галлей доказал, что кометы 1531, 1607 и 1682 года — это одна и та же комета, и предсказал её возвращение в 1759 году, данная комета стала называться кометой Галлея. Также, вторая и третья известные периодические кометы получили имена Энке и Биэлы в честь учёных, вычисливших орбиту комет, несмотря на то, что первая комета наблюдалась ещё Мешеном, а вторая — Мессье в XVIII в. Позже, периодические кометы обычно называли в честь их первооткрывателей. Кометы, наблюдавшиеся лишь в одном прохождении перигелия, продолжали называть по году появления.

В начале XX века, когда открытия комет стали частым событием, было выработано соглашение об именовании комет, которое остается актуальным до сих пор. Комета получает имя только после того, как её обнаружат три независимых наблюдателя. В последние годы, множество комет открывается с помощью инструментов, которые обслуживают большие команды учёных. В таких случаях кометы именуются по инструментам. Например, комета C/1983 H1 (IRAS — Араки — Олкока) была независимо открыта спутником IRAS и любителями астрономии Гэнъити Араки (яп. Genichi Araki) и Джорджем Олкоком (англ. George Alcock). В прошлом, если одна группа астрономов открывала несколько комет, к именам добавляли номер (но только для периодических комет), например, кометы Шумейкеров — Леви 1—9. Сейчас рядом инструментов открывается множество комет, что сделало такую систему непрактичной. Вместо этого используют специальную систему обозначения комет.

До 1994 года кометам сначала давали временные обозначения, состоявшие из года их открытия и латинской строчной буквы, которая указывает порядок их открытия в данном году (например, комета 1969i была девятой кометой, открытой в 1969 году). После того, как комета проходила перигелий, её орбита надежно устанавливалась, после чего комета получала постоянное обозначение, состоявшее из года прохождения перигелия и римского числа, указывавшего на порядок прохождения перигелия в данном году. Так комете 1969i было дано постоянное обозначение 1970 II (вторая комета, прошедшая перигелий в 1970 году).

По мере увеличения числа открытых комет эта процедура стала очень неудобной. В 1994 году Международный астрономический союз одобрил новую систему обозначений комет. Сейчас в название кометы входит год открытия, буква, обозначающая половину месяца, в котором произошло открытие, и номер открытия в этой половине месяца. Эта система похожа на ту, которая используется для именования астероидов. Таким образом, четвёртая комета, открытая во второй половине февраля 2006 года, получает обозначение 2006 D4. Перед обозначением кометы ставят префикс, указывающий на природу кометы. Используются следующие префиксы:

P/ — короткопериодическая комета (то есть комета, чей период меньше 200 лет, или которая наблюдалась в двух или более прохождениях перигелия);
C/ — долгопериодическая комета;
X/ — комета, достоверную орбиту для которой не удалось вычислить (обычно для исторических комет);
D/ — кометы разрушились или были потеряны;
A/ — объекты, которые были ошибочно приняты за кометы, но реально оказавшиеся астероидами.

Например, комета Хейла — Боппа получила обозначение C/1995 O1. Обычно после второго замеченного прохождения перигелия периодические кометы получают порядковый номер. Так, комета Галлея впервые была обнаружена в 1682 году. Её обозначение в том появлении по современной системе — 1P/1682 Q1. Кометы, которые впервые были обнаружены как астероиды, сохраняют буквенное обозначение. Например, P/2004 EW38 (Catalina — LINEAR).

Всего есть пять тел в Солнечной системе, которые числятся и в списке комет, и в списке астероидов. Это 2060 Хирон (95P/Хирон), 4015 Вильсон — Харрингтон (107P/Вильсона — Харрингтона), 7968 Эльст — Писарро (133P/Эльста — Писарро), 60558 Эхекл (174P/Эхекл) и 118401 LINEAR (176P/LINEAR).

Перигелий

Комета стала впечатляющим зрелищем в начале 1997 года.

Звездная карта пути с отмеченным 14-дневным движением

Хейла-Боппа стало видно невооруженным глазом в мае 1996 года, и хотя скорость его прояснения значительно замедлилась во второй половине того же года, ученые все еще были осторожно оптимистичны, что он станет очень ярким. Оно было слишком близко к Солнцу, чтобы его можно было наблюдать в декабре 1996 года, но когда оно снова появилось в январе 1997 года, оно было уже достаточно ярким, чтобы его мог увидеть любой, кто его искал, даже из больших городов с загрязненным светом небом.. В то время Интернет был растущим явлением, и многочисленные веб-сайты, которые отслеживали продвижение кометы и ежедневно предоставляли изображения со всего мира, стали чрезвычайно популярными

Интернет сыграл большую роль в поощрении беспрецедентного общественного интереса к комете Хейла – Боппа.

В то время Интернет был растущим явлением, и многочисленные веб-сайты, которые отслеживали продвижение кометы и ежедневно предоставляли изображения со всего мира, стали чрезвычайно популярными. Интернет сыграл большую роль в поощрении беспрецедентного общественного интереса к комете Хейла – Боппа.

По мере того, как комета приближалась к Солнцу, она продолжала светиться, сияя 2-й звездной величиной в феврале и показывая растущую пару хвостов : синий газовый хвост направлен прямо от Солнца, а желтоватый пылевой хвост изгибается вдоль своей орбиты. 9 марта солнечное затмение в Китае, Монголии и Восточной Сибири позволило наблюдателям увидеть комету в дневное время. Хейла-Боппа имел свой самый близкий подход к Земле 22 марта 1997 года, на расстоянии 1.315  AU .

Пройдя перигелий 1 апреля 1997 года, комета превратилась в захватывающее зрелище. Она сияла ярче любой звезды на небе, кроме Сириуса , а ее пылевой хвост тянулся на 40–45 градусов по небу. Комета была видна задолго до того, как небо становилось полностью темным каждую ночь, и хотя многие большие кометы находятся очень близко к Солнцу, когда проходят перигелий, комета Хейла-Боппа была видна наблюдателям в северном полушарии всю ночь .

Интересные факты

Согласно определению, комета — это одновременно небесное тело и астрономический объект. Эти термины часто воспринимаются как синонимы, но это не всегда так. Обычно тело — это обособленная единица (планета или звезда). Объект — образование из нескольких структур (галактика).

Казалось бы, комета — это единое физическое тело, но её можно обозначить и как объект, если воспринимать ядро, кому и хвост в виде самостоятельных структур. Одним из доказательств такой самостоятельности отдельных частей является тот факт, что иногда под действием магнитных полей в солнечном ветре хвост отделяется от ядра, как это случилось в 2009 году с кометой Лулинь.

Необычными также являются орбиты, по которым движутся эти небесные тела. Если планеты прокладывают путь в космосе по практически правильному кругу, то траектория комет настолько вытянута, что похожа на параболу. Так происходит, поскольку их ядра вступают в гравитационное взаимодействие с сильно отличающимися от них по массе планетами. При этом скорость движения увеличивается, и орбита становится вытянутой.

Другой интересный факт о кометах касается их хвоста и заключается в том, что на деле за небесным телом тянется целых два шлейфа, один из которых по направлению перпендикулярен Солнцу, а другой искривлён к орбите. Первый состоит из светящихся голубоватым цветом газов, второй — из космической пыли.

Типы астероидов

Астероиды обычно классифицируются по их орбитальному пути и по спектральному отражению. Что касается орбитальной классификации, то астероид может быть частью группы или семейства астероидов. Группы астероидов состоят из большого количества астероидов, которые вращаются вместе с относительно свободным прилеганием. С другой стороны, семейства астероидов можно найти в непосредственной близости и, предполагается, что они возникли в результате разделения более крупного астероида в какой-то момент в прошлом.

Астероидная спектральная классификация основана на цвете, форме и отражающих свойствах этих космических объектов. Астероиды первоначально были разделены на три спектральные категории: темные, каменистые, и те, которые нельзя отнести к первым двум. На протяжении многих лет эти категории расширялись по мере обнаружения новых типов астероидов.

Метеороиды

В Солнечной системе полным-полно гораздо более мелких космических обломков, чем кометы. Они называются метеороидами. Это могут быть пылинки от комет, крупные каменные глыбы или даже фрагменты разбитых астероидов. Падающие звезды Иногда Земля пересекает орбиты таких метеороидов, и тогда, прорываясь сквозь земную атмосферу и разогреваясь, они вспыхивают яркими полосками света, которые мы называем метеорами, или падающими звездами.В ясную ночь ты можешь увидеть несколько метеоров за час; а когда Земля проходит через поток пылинок, оставленных пролетевшей кометой, каждый час можно видеть десятки метеоров.

Камни из космоса

Куски метеороидов, уцелевшие после прохождения через атмосферу в качестве метеоров и упавшие на землю в виде обуглившихся камней, называются метеоритами. Обычно они темного цвета и очень тяжелы, а местами выглядят ржавыми. Случается, что метеориты пробивают крыши домов и падают в сады; но все же опасность подвергнуться удару метеорита для человека ничтожно мала. 

Что будет, если комета упадет на Землю?

Размеры и масса комет крайне малы, в сотни миллионов раз меньше Земли, в результате чего они почти не оказывают никакого воздействия на космические тела Солнечной системы. Более того, иногда наша планета проходит сквозь кометы, к примеру, как это случилось в 1910 году, году Земля прошла сквозь хвостовую часть кометы Галлея, не подвергшись никаким изменениям.

Вместе с тем в случае возможного столкновения с обозреваемым небесным телом больших размеров атмосфера и магнитосфера нашей планеты могут серьезно пострадать. Согласно мнению астрофизика из США Лизы Рэндалл, время от времени Земля сталкивалась с массовыми вымираниями, происходящими в биосфере планеты после столкновения с внеземными представителями из Облака Оорта.

Одним из наиболее глобальных массовых вымираний является гибель динозавров, случившаяся 60–65 млн. лет назад, предположительно, после импактных событий — падения большого метеорита, астероида, кометы или других внеземных объектов на Землю.

Кометы и иные космические тела периодически пролетают на расстоянии, позволяющем разглядеть их с планеты невооруженным глазом. Встречаются и случаи действительного падения внеземных объектов на поверхность Земли — к примеру, когда в 1908 году в Восточной Сибири, предположительно, упал Тунгусский метеорит. Учитывая сказанное, разумно выразить тревогу относительно того, что в будущем человечеству, возможно, придется столкнуться с явной опасностью в лице внеземного гостя под названием «комета». Или любого другого объекта, что в случае «удачной» траектории полета нанесет непоправимый ущерб планете, повторив нечто похожее на массовое вымирание.

Типы комет

Обычно считается, что кометы относятся к одной из двух категорий: короткопериодической и долгопериодической. Короткопериодическим кометам, также известным как периодическим кометам, обычно требуется менее 200 лет, чтобы завершить полную орбиту. Эти кометы, как правило, движутся по тому же пути, что и другие тела или планеты Солнечной системы, путешествуя также далеко, как Юпитер и Нептун. По мере приближения короткопериодических комет к этим более крупным планетам они подвергаются дополнительному гравитационному притяжению.

Долгопериодические кометы завершают полную орбиту за период от 200 до 1000 лет. Мало того, что этим космическим объектам необходимо больше времени, чтобы преодолеть полный путь вокруг Солнца, они также имеют эллиптическую, а не круговую орбиту. Гравитационное притяжение более крупных планет может привести к тому, что долгопериодические кометы вынуждены полностью выходить за пределы Солнечной системы.

Особенности строения

Классическая комета содержит несколько важнейших элементов.

  1. Ядро. Это твёрдая область, в которой сосредоточена львиная доля массы. В настоящее время она недоступна к детальному изучению, т. к. материя, которая постоянно светится, скрывает её. В рамках самых распространённых версий ядро представляет собой смесь льдов, в которых присутствуют включения частиц метеоров. Слой газов в замёрзшей форме чередуется со слоем пыли.
  2. Кома. Она представляет собой туманную оболочку, выполненную в светлом тоне, которая окружает ядро. В составе преобладают пылевые и газовые частицы. Традиционно протяжённость составляет от 100 000 до 1,4 млн км от ядерной части. Ввиду высокого давления света происходит деформация. Кома + ядро – это и есть голова. Кома состоит из внутренней, видимой, атомной зоны.
  3. Хвост. По мере приближения к небесному светилу комета обзаводится хвостом. Это полоса неяркого света, которая чаще всего образуется в ходе влияния Солнца, но направленность её идёт против звезды. В этой области объекта содержится меньше, чем 1 / 1 000 000 массы кометы. Связано это с низким альбедо ядра и его компактностью. Эти элементы часто различны по длине и форме. В ряде ситуаций они могут протягиваться через всё небо. Резкие выраженные очертания отсутствуют. В составе преобладают небольшие пылинки в сочетании с газом.

В связи с тем, что многие виды комет до настоящего времени не изучены, учёные продолжают заниматься проведением соответствующих работ.

Комета и её хвост

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector