Космос: что такое, границы, где начинается, описание, строение, фото и видео

Чем пахнет космос?

В космосе много странных запахов

Если вы думаете, что, оказавшись в космическом пространстве, вашему носу не придется вкушать его весьма специфичный запах, то вы ошибаетесь. Казалось бы, в космосе нет воздуха. Безвоздушное пространство не может содержать каких-либо ароматов. Так чем же может пахнуть космос? Чем может пахнуть пустота? Со слов летавших людей, космос пахнет жареным стейком, приправленным горящим металлом и порохом. По словам некоторых российских космонавтов, космос воняет горелой помойкой. Американский астронавт Доналд Рой Петтит в свое время говорил, что лучшим описанием космического запаха будет прилагательное «металлический».

Разумеется, понюхать космос в его естественной форме и среде абсолютно невозможно, поэтому ощутить всю гамму окружающих ароматов человек может лишь в атмосфере космического аппарата, например, находясь в космическом корабле или на борту орбитальной станции. Но запахи ведь откуда-то берутся?

Специалисты говорят, что запах может вызываться всем тем, что может его создавать внутри закрытого помещения: обшивка, приборы, продукты питания, отходы жизнедеятельности, человеческий пот и кожа, а также всевозможные продукты горения в результате форс-мажорных ситуаций вроде пожара или поломки системы кондиционирования. Помимо этого, непередаваемый аромат может быть принесен с собой прямо из открытого космоса, особенно если астронавту довелось работать поблизости с двигателями корабля. В этом случае на скафандре остаются смолоподобные остатки выхлопов, от которых весьма сложно избавиться.

Полеты на Венеру

По всей видимости, Венера была более благосклонна к советским ученым, нежели Луна.

Так, запущенный 12 февраля 1961 года советский зонд «Венера-1» (является вторым советским аппаратом в этот адрес) отправился в миссию умышленного столкновения с Венерой.

Сбой в работе систем во время полета привели к неуправляемому дрейфу аппарата, из-за чего, удалившись на 2 миллионов километров от Земли, зондом была потеряна связь и он пролетел мимо.

«Венера-4» в октябре 1967 года доставила на Венеру сферический спускаемый аппарат, который в течение 94 минут с помощью парашютной системы опускался на ночной стороне планеты.

Это позволило уточнить множество данных о второй планете Солнечной системы и разработать несколько поколений аппаратов для её исследования.

Тем не менее, 17 августа 1970 года один из множества аппаратов серии «Венера-7», отправился к далекой планете и смог осуществить первое успешное приземление на другой планете.

Для работы в условиях раскаленной атмосферы, аппарат был охлажден до −8 градусов по Цельсию.

Таким образом, вопреки отказу парашюта для спуска, зонд передавал данные с поверхности Венеры в течение 23 минут после посадки.

Таким образом была совершена первая передача данных с другой планеты, успешно повторенная уже с дневной стороны планеты в 1972 с помощью ещё одного советского комплекса «Венера-8».

Что происходит с телом в космосе?

Много чего, и пока мы не узнаем точных последствий воздействия невесомости на человеческое тело, мы не можем послать людей в более отдаленные места (на Марс или на астероиды).

Бывший пилот и астронавт НАСА Скотт Келли провел год в капсулах МКС для экспериментального изучения воздействия невесомости на человеческий организм. Кстати, это не рекордно длинное пребывание в космосе: российский космонавт Геннадий Падалка суммарно провел в космосе 878 дней.

Но эксперимент Келли имеет больше веса по одной простой причине: у него есть брат-близнец. Сравнив состояние организмов брата-космонавта и брата-«землянина», ученые смогли оценить уровень ущерба, наносимого мышцам, костям и внутренним органам при пребывании в космосе. На МКС есть гимнастическое оборудование, чтобы держать мышцы в тонусе, но во время занятий необходимо надевать удерживающие устройства (хотя бы чтобы не свалиться с беговой дорожки).

Популярные темы сообщений

  • цветок Азалия Азалия – необыкновенно красивое растение, но оно требует постоянного к себе внимания. Относится к вечнозеленым кустарникам семейства вересковых. Стало известно людям с 17 века. Ка и многие представители мира растений славится мифами
  • Расы человека Расой называют совокупность популяционных групп людей, обладающие похожими характеристиками, которые проявляются внешне. Преимущественно внешние черты являются результатом приспособления к окружающим условиям,
  • Плавание С древних времен люди уже умели держаться, передвигаться и нырять в воде. Но первые спортивные соревнования по плаванию появились только в начале ХV века. Плавание – вид спорта, в котором главной задачей является с помощью рук и ног

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

История наблюдений за туманностями

В древние времена люди замечали очень много астрономических объектов. Первое зарегистрированное наблюдение туманности произошло в 150 году н.э. В то время Птолемей обнаружил 5 звезд. В своей книге «Альмагест» он также отметил яркие области между Большой Медведицей и Львом, которые не связывались какой-нибудь наблюдаемой звездой.

Персидский астроном Абд аль-Рахман ас-Суфи в «Книге неподвижных звезд» (964 год н.э.) впервые зафиксировал туманность. Он говорил об облаке, где сейчас расположена Андромеда. Кроме того, он записал Омикрон Парусов и Скопление Брохчи.

4 июля 1054 года вспыхнула сверхновая, создавшая Крабовидную туманность (SN 1054). Китайские и арабские астрономы смогли разглядеть ее и зарегистрировать. Были свидетельства, что многие цивилизации замечали все эти объекты, но не оставили после себя записей.

В 17-м веке наблюдения стали еще доступнее благодаря появлению телескопов. Все началось в 1610 году, когда астроном из Франции Никола-Клод Фабри де Пейреск впервые зарегистрировал туманность Ориона. В 1618 году астроном из Швейцарии Иоганн Баптист Цизат также видел ее, после чего в 1659 году подключился Кристиан Гюйгенс.

Космическому телескопу Хаббл удалось максимально глубоко взглянуть на удивительное формирование. Крабовидная туманность взывает интерес у астрономов, потративших много времени на ее изучение. Это наикрупнейший снимок (наивысшее разрешение), созданный благодаря камере Хаббла WFPC2. Для комбинированного изображения использовали 24 отдельных кадра.

К 18 веку количество найденных туманностей начало увеличиваться, и астрономы поняли, что пришло время создавать списки. В 1715 году Эдмунд Галлей опубликовал список из туманностей Мессье 11, Мессье 13, Мессье 22, Мессье 31, Мессье 42 и глобулярного скопления Омега Центавра (NGC 5139).

В 1746 году Жан Филипп де Шезо предоставил 20 туманностей, включая 8 новых. Николя Луи де Лакайль (в 1751-1753 гг.) категорировал 42 туманности, большая часть которых ранее нигде не упоминалась. И уже в 1781 году появляется известный каталог Шарля Мессье (101 объект), куда также вошли галактики и кометы.

Перед вами удивительный кадр юной туманности (планетарная) MyCn 18. Камере Хаббл удалось запечатлеть ее при удаленности в 8000 световых лет. Здесь отображен реальный силуэт, напоминающий песочные часы с интересными «узорами» на стенах. Для этого изображения использовали 3 разных кадра, созданных в свете ионизированного азота (в красном), дважды ионизированного кислорода (в синем) и водорода (в зеленом). Ученые все еще пытаются разобраться в процессе выплеска звездной материи, сопровождающей смерть звезд, похожих на Солнце. И данный снимок помогает лучше изучить этот механизм. В отличие от предыдущих изображений, здесь получилось открыть мелкие детали.

Количество туманностей значительно пополнили Уильям Гершель и его сестра Кэролайн. В 1786 году выходит их публикация «Тысяча новых туманностей и звездных скоплений», которые дополнились вторым и третьем каталогом в 1786 и 1802 годах. Тогда Гершель полагал, что туманность представляет собою неразрешенное скопление звезд и он бы изменил мнение, если бы в 1790 году увидел туманность, окружающую далекую звезду.

С 1864 года Уильям Хаггинс начал разделять туманности, основываясь на их спектрах. 1/3 обладала спектром излучения газа (эмиссионные), а другие демонстрировали непрерывный спектр, согласующийся со звездной массой (планетарные).

Весто Слайфер в 1912 году добавил отражательные туманности, после того, как увидел скопление Плеяд. После дебатов в 1922 году стало понятно, что многие объекты, наблюдаемые ранее, были не туманностями, а далекими спиральными галактиками. Тогда же Эдвин Хаббл объявил, что практически все туманности связаны со звездами, обеспечивающих освещение. С тех пор количество росло, а классификация становилась более четкой.

Получается, что туманность – не только старт для звезды, но и финиш. И во всех звездных системах найдутся туманные облака и массы, ожидающие рождения нового звездного поколения. На нашем сайте вы сможете не только полюбоваться на фото туманностей и изучить весь список, но также рассмотреть их в режиме онлайн с помощью 3D-моделей, где указаны все звезды, туманности, созвездия и скопления как в галактике Млечный Путь, так и за ее пределами.

Космос в философии 19-20-х веков

Промышленная революция нового времени полностью исказила предыдущие версии восприятия космического пространства. За основу была взята новая «мифология».

На рубеже веков возникло такое философское направление, как кубизм. Он во многом воплотил законы, формулы, логические конструкции и идеализации греко-православных представлений, которые, в свою очередь, заимствовали их у античных философов. Кубизм – хорошая попытка познать человеком себя, мир, свое место в мире, свое призвание, определиться с основными ценностями.

Русский космизм не далеко ушел от античных представлений, однако изменил их корень. Теперь космос — это в философии нечто с конструкционными особенностями, которые были основаны на принципах православного персонализма. Нечто историческое и эволюционное. Космическое пространство может изменяться к лучшему. За основу были взяты библейские предания.

Космос в представлении философов 19-20 годов объединяет между собой искусство и религию, физику и метафизику, знания об окружающем мире и человеческой природе.

Оптический телескоп «Сюньтянь»

Телескоп Китайской космической станции (CSST) «Сюньтянь» или «Небесный часовой» — автономный орбитальный модуль с оптическим телескопом.

Запуск «Сюньтянь» запланирован на 2024 год. Телескоп будет вращаться вокруг Земли по той же орбите, что и китайская модульная станция. Он сможет периодически приближаться и стыковаться с ней, чтобы экипаж проводил необходимый ремонт и менял приборы.

Телескоп «Сюньтянь»

(Фото: CSNA)

Огромная линза делает «Небесного часового» сопоставимым с «Хабблом». При этом обзор китайского телескопа будет в 300 раз больше при таком же высоком разрешении. Благодаря широкому полю зрения он сможет наблюдать до 40% пространства в течение десяти лет.

Телескоп Китайской космической станции будет вести наблюдение в ближнем ультрафиолетовом и видимом свете, а также исследовать свойства темной материи, формирование и эволюцию галактик.

Воздействие космического пространства на человеческий организм

Человечество уже более полувека активно исследует околоземное пространство, поэтому мы неплохо представляем, как оно воздействует на наше тело. Вопреки распространенному мнению, человека, оказавшегося в космическом вакууме без скафандра, не разорвет на части и кровь не закипит у него в сосудах, ему даже не угрожает моментальная потеря сознания. Он просто умрет от недостатка кислорода, другими словами, задохнется.

Прочими очевидными опасностями, которые поджидают незадачливого космонавта, является декомпрессия, солнечные ожоги незащищенных частей тела, переохлаждение. Эти процессы начинаются через 10-15 секунд после контакта нашего тела с космическим пространством. Необратимые повреждения, несовместимые с жизнью, они наносят не сразу: считается, что смерть наступает через одну-две минуты. Все вышесказанное – это скорее теоретические выкладки, на практике их по понятным причинам не проверяли.

Человек только начинает изучение и освоение космоса

В истории НАСА описан случай, когда человек из-за повреждения скафандра оказался в условиях, близких к космическому вакууму (давление ниже 1 Па). Он потерял сознание только через 14 секунд – примерно такое время потребовалось для начала кислородного голодания мозга. Он пришел в себя только после повышения давления до уровня высоты 4,6 км. Позже астронавт рассказывал, что чувствовал потерю воздуха и слюну, закипающую на языке.

В середине 90-х годов появилась информация о еще одном похожем инциденте, произошедшем в 1960 году. Во время подъема в открытом аэростате на высоту 19,5 мили, у пилота произошла разгерметизация рукава скафандра. Это создало ему серьезный дискомфорт, но после возвращения в более низкие слои атмосферы они исчезли без особых негативных последствий.

Правовой режим космического пространства и небесных тел

Порядок такого контроля и регулирования установлен Генеральной Ассамблеей ООН и Договором о принципах деятельности государств по исследованию и использованию космического пространства.

Собственно говоря, давайте выделим несколько основных моментов:

1) космическое пространство и небесные тела открыты и свободны для научных опытов, разработок и использования для всех государств;

2) запрещается производить взрывы ядерного оружия;

3) разрешена деятельность междунациональных организаций;

4) использование только в мирных целях;

5) все космические объекты регистрируются;

6) полномочия на космические объекты сохраняются за государством;

7) расходы по обнаружению и возвращению космического объекта несёт государство, кому они принадлежат;

8) признание космоса территорией общего пользования.

Между прочим, космонавты признаны посланцами человечества в космос

И, что важно, они обладают правом на помощь от государств. Также они обязаны помогать друг другу в космосе

Как проходил первый в мире выход в открытый космос

Угрожающих факторов, с которыми мог столкнуться Алексей Леонов за бортом ракеты, было немало: это и потеря связи с кораблем, и столкновение с так называемым космическим мусором, и недостаточный запас кислорода. Кроме того, не исключались перегрев, переохлаждение или поражение радиацией.

Сборка в цехе космического корябля Восход-2

Леонова соединял с кораблем прочный трос длиной 5,5 метров. Алексей то отдалялся от корпуса корабля, то приближался к нему вплотную, снимая весь процесс на кинокамеру. В те годы еще не были изобретены специальные реактивные ранцы, позволяющие космонавтам свободно передвигаться и маневрировать в открытом космосе, а потом возвращаться на корабль. Тонкий прочный трос, снабженный двумя металлическими карабинами, – вот все, что соединяло Алексея Архиповича с кораблём, а значит, и с Землей.

Скафандр Леонова, названный разработчиками «Беркутом», представлял собой полностью автономную защитную систему с максимальным запасом кислорода в 1666 л. При этом космонавт каждую минуту расходовал более тридцати литров. Поэтому на весь процесс выхода в открытый космос Леонову отводилось время одного школьного урока – 45 минут. Пилот должен был успеть переместиться в шлюз, выйти в космос, произвести необходимые действия, вернуться в шлюзовую камеру и дождаться её закрытия. «Лишнего» кислорода на случай неудачи просто не было!

Весь процесс выхода Алексея Леонова в открытый космос занял 23 минуты 41 секунду. За бортом корабля пилот пробыл 12 минут 9 секунд.

Скафандр «Беркут» для выхода в открытый космос.

Леонову повезло: он успел завершить все свои действия до того момента, когда корабль вошел в теневую зону. В противном случае низкие (до минус 100о) температуры могли помешать выполнению программы и даже создать угрозу жизни космонавта. Кроме того, в полной тьме Алексею было бы крайне сложно справиться с тросом и войти обратно в шлюз. Но пребывание на солнечной стороне, где температура достигала +60о, также оказалось сомнительным удовольствием: все двенадцать минут космонавт страдал от нестерпимой жары и обливался потом. По словам Леонова, какой-то особо едкий пот буквально заливал ему глаза, и терпеть жжение было просто невыносимо.

Шлюз был надут на самом первом витке. Беляев и Леонов в скафандрах заняли свои места. Как только ракета пошла на второй виток, Леонов перебрался в камеру шлюза и командир закупорил люк. В 11 ч 28 мин из «Волги» был выкачан воздух, а еще через четыре минуты открылся внешний люк, и Алексей Архипович оказался один на один с бездной. В 11 ч 34 мин Леонов вышел в открытый космос.

Сначала Алексей «отплыл» от ракеты примерно на метр и сразу же вернулся. Его тело могло совершать любые движения в пространстве, свободно переворачиваться. Перед космонавтом развернулась земная панорама, которую он наблюдал сквозь стекло: Черное море с кораблями.

Кадр из фильма «Время первых»

Леонов несколько раз отдалялся от корабля и вновь приближался к нему, раскидывая руки и делая различные развороты в невесомости. Все это время он не переставал общаться с Беляевым и Центром управления полетами на Земле. Когда Алексей «проплывал» над Волгой, командир дал ему возможность послушать сообщение ТАСС о выходе советского пилота в открытый космос. Эту грандиозную новость о самом себе Леонов услышал по телефону, размещенному внутри скафандра и подключенному к радио Москвы. В этот самый момент камеры корабля вели трансляцию на Землю, и все люди планеты смогли увидеть, как Леонов жестом поприветствовал землян прямо из открытого космоса!

Первые полет в космос

Имя гражданина СССР Юрия Гагарина известно большинству землян. 12 апреля 1961 г. был начат отсчет космической эры человечества — на корабле «Восток» стартовал первый космонавт.

Юрий Алексеевич Гагарин (1934—1968) — летчик-космонавт СССР, Герой Советского Союза, полковник, первый человек, совершивший полет в космическое пространство

Полет Юрия Гагарина продолжался 1 час 48 минут. После одного витка вокруг Земли спускаемый аппарат корабля совершил посадку в Саратовской области. На высоте нескольких километров Гагарин катапультировался и совершил мягкую посадку на парашюте недалеко от спускаемого аппарата.

Первому космонавту планеты было присвоено звание Героя Советского Союза, а день его полета стал национальным праздником — Днем космонавтики.

Схема полета Юрия Гагарина 12 апреля 1961 г.

Фото Гагарина облетело весь мир, международный престиж СССР невероятно возрос. Да и сам по себе первый в истории полет человека в космос имел огромное научное и практическое значение.

Другие измерения

Идея о том, что пространство имеет более трех измерений, может показаться, на первый взгляд совершенно безумной. Однако этот вопрос физики серьезно изучают уже более века.

Давайте, для начала, вспомним, как мы описываем пространство и предметы в нем. В двух измерениях мы можем нанести сетку на плоскость, а затем каждую ее точку описать парой чисел. Это координаты. Зная их, Вы будете понимать, сколько нужно пройти в горизонтальном и вертикальном направлении, чтобы достичь этой точки. Стрелка, указывающая на эту точку, называется «вектором».

Эта конструкция справедлива не только по отношению к двум измерениям. Вы можете добавить и третье направление. И проделать все то же самое. Но зачем останавливаться на достигнутом? А дальше? Дальше все немного усложняется. Вы больше не можете нарисовать сетку для четырехмерного пространства. Но вы определенно можете записать векторы. Это просто ряд из четырех чисел. Хм, это что же получается? Мы можем строить векторные пространства с любым количеством измерений? И даже с бесконечным их множеством? Да. Математика дает нам такую возможность.

Обсерватория Кека

Фото: W. M. Keck Observatory

Обсерватория Кека является частью W. M. Keck Foundation, основанной в 1954 году предпринимателем и филантропом Уильямом Кеком, который поддерживал научные, инженерные и медицинские исследования. Обсерватория находится на вершине Мауна-Кеа (остров Гавайи) на высоте 4 145 м над уровнем моря. Она оснащена двумя телескопами высотой в восемь этажей, которые обнаруживают цели с точностью до нанометра. Телескопы могут отслеживать объекты в течение нескольких часов. Каждый из них весит 300 т, а зеркала состоят из 36 шестиугольных сегментов.

До 2007 года и появления в Испании Большого канарского телескопа телескопы Кека считались крупнейшими в мире. Они находят планеты, работая по принципу эффекта Доплера — измеряя изменения звездного света. Благодаря этим телескопам ученые обсерватории открыли наибольшее количество экзопланет, в том числе самую молодую LkCa 15 b.

Астрономы обсерватории Кека первыми в истории получили изображение планетной системы на орбите вокруг звезды, которая не является Солнцем. В 2017 году NASA заключила пятилетнее соглашение (действует с 2018 по 2023 год) с владельцами обсерватории на совместное исследование космического пространства. До этого ученые Кека помогли NASA осуществить миссию Kepler/K2, предоставив фотографии высокого разрешения для проверки и описания существования сотен орбит экзопланет. А с помощью телескопов обсерватории удалось обнаружить первые признаки водяного пара на одном из 79 спутников Юпитера. В 2019 года это подтвердили ученые NASA.

Водяной пар на спутнике Юпитера Европе

Интересные факты (adsbygoogle = window.adsbygoogle || []).push({});

Космос – это то пространство, на орбитах которого можно наблюдать восход Солнца около 16 раз в сутки. Это, в свою очередь, негативно отражается на биоритмах, препятствует нормальному засыпанию.

Интересно, что освоение унитаза в космосе — целая наука. Прежде чем это действие начнет получаться в совершенстве, все космонавты тренируются на макете. Техника отрабатывается на протяжении определенного промежутка времени. Ученые пытались организовать мини-туалет непосредственно в самом скафандре, однако реализовать это не получилось. Вместо этого стали использовать обыкновенные памперсы.

Каждый космонавт после возвращения домой некоторое время недоумевает, почему предметы падают вниз.

Не многие знают, почему первые в космосе продукты питания были представлены в тюбиках или брикетах. На самом деле проглатывать пищу в космическом пространстве – довольно сложная задача. Поэтому продукты питания предварительно обезвоживали, чтобы сделать этот процесс доступнее.

Интересно, что люди, которые храпят, в космосе с этим процессом не сталкиваются. Точное объяснение данному факту пока сложно дать.

«Небесное око» в Китае

Фото: Ou Dongqu/Xinhua/ZUMA

Сферический телескоп FAST — один новейших инструментов исследования космического пространства. Это совместный проект Национальной астрономической обсерватории Китая (NAOC) и программы российского предпринимателя Юрия Мильнера Breakthrough Initiatives. Концепцию радиотелескопа начали разрабатывать еще в 1994 году, а построить и запустить его удалось только в 2016-м.

Поиски подходящего места для строительства заняли десять лет, так как для сооружения нужна была местность, похожая на естественный кратер. Правительство Китая переселило 65 жителей деревни во впадине Даводанг в провинции Гуйчжоу и еще 9 110 человек в радиусе пяти километров от расположения телескопа, чтобы очистить пространство и создать зону радиомолчания.

Диаметр телескопа составляет полкилометра (около 30 футбольных полей), а глубина — 140 м. Он состоит из 4 450 маленьких двигающихся треугольных панелей, которые позволяют проводить наблюдения с разных углов. Во время работы телескоп «ловит» радиоволны, которые издают объекты в космическом пространстве. Из-за своего размера FAST может собирать сигналы из дальних уголков космоса. Исследователи говорят, что во время тестового запуска телескоп обнаружил радиоволны трех быстровращающихся звезд.

Разработчики уверены, что телескоп может помочь в поиске гравитационных волн и исследовать мимолетные звуковые вспышки мертвых звезд. Уже в августе 2021 года FAST станет исследовательской платформой для астрономов со всего мира.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector